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MICHEL ROCH AND ANDREW STANIFORTH1

Meteorological Research Branch, Meteorological Service of Canada, Dorval, Québec, Canada
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ABSTRACT

An integrated forecasting and data assimilation system has been and is continuing to be developed by the
Meteorological Research Branch (MRB) in partnership with the Canadian Meteorological Centre (CMC) of
Environment Canada. Part III of this series of papers presents the nonhydrostatic formulation and some sample
results. The nonhydrostatic formulation uses Laprise’s hydrostatic pressure as the basis for its vertical coordinate.
This allows the departure from the hydrostatic formulation to be incorporated in an efficient switch-controlled
perturbative manner. The time discretization of the model dynamics is (almost) fully implicit semi-Lagrangian,
where all terms including the nonlinear terms are (quasi-) centered in time. The spatial discretization for the
adjustment step employs a staggered Arakawa C grid that is spatially offset by half a mesh length in the meridional
direction with respect to that employed in previous model formulations. It is accurate to second order, whereas
the interpolations for the semi-Lagrangian advection are of fourth-order accuracy except for the trajectory
estimation. The resulting set of nonlinear equations is solved iteratively using a motionless isothermal reference
state that gives the usual semi-implicit problem as a preconditioner. The Helmholtz problem that needs to be
solved at each iteration is vertically separable, the impact of nonhydrostatic terms being simply a renormalization
of the separation constants. The convergence of this iterative scheme is not greatly modified by the nonhydrostatic
perturbation. Three numerical experiments are presented to illustrate the model’s performance. The first is a test
to show that hydrostatic balance at low resolution is well maintained. The second one is a mild orographic
windstorm case, where the flow should remain hydrostatic, to test that hydrostatic balance at high resolution is
also well maintained. The third one is a convective case taken from the Verification of the Origins of Rotation
in Tornadoes Experiment (VORTEX). Although these results are encouraging, rigorous testing of the model’s
performance for strongly nonhydrostatic flows still remains to be done.

1. Introduction

The hydrostatic assumption, namely, the neglect of
vertical acceleration in the vertical momentum equation
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of the primitive equations, is an excellent approximation
that is well respected in the atmosphere down to scales
of 10 km or so. However, at these scales the dynamical
effects excluded by the hydrostatic assumption, for ex-
ample, internal wave breaking and overturning, start to
become nonnegligible.

To date, computer limitations have been such that
almost all operational weather forecast (and climate sim-
ulation) models have been run with horizontal mesh
lengths coarse enough to confidently employ the hy-
drostatic primitive equations. Looking to the future
however, this will change (Daley 1988). In particular,
if a model is to be applied with meso-g-scale mesh
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configurations, then it should use the fully compressible
nonhydrostatic primitive equations instead of the so-
called hydrostatic primitive ones. This motivates the use
of ‘‘hydrostatic pressure’’ as the basis for a vertical
coordinate as proposed in Laprise (1992). This coor-
dinate system permits a switch-controlled choice be-
tween the hydrostatic primitive equations (for large- and
synoptic-scale applications), and the nonhydrostatic
primitive equations (for smaller-scale applications). The
computational and memory overhead associated with
the latter option can then be avoided for applications
where the hydrostatic approximation is valid. A terrain-
following normalized pressure version (Phillips 1957;
Kasahara 1974) is possible (Bubnova et al. 1994, 1995),
allowing an easy incorporation of the lower boundary,
and a relaxation toward the horizontal upward from the
earth’s surface. For atmospheric applications, there is
virtually no scale restriction on using hydrostatic pres-
sure as vertical coordinate since it only requires density
to be positive; integrations are presented in Bubnova et
al. (1995) with horizontal resolution as high as 80 m.
Note however that terrain-following transformations ul-
timately break down in the presence of cliffs due to a
breakdown of differentiability.

The model formulation presented here was outlined
in Côté et al. (1994). It differs from the Bubnova et al.
(1994, 1995) formulation in several aspects besides the
horizontal discretization. First, the set of equations used
is different: Laprise (1992) gave various alternative for-
mulations, the subset chosen here is the minimal one
having as supplementary equations the vertical equation
of motion and the definition of vertical velocity (see
section 2a). Second, the present dynamical formulation
is (quasi-) centered (almost) fully implicit (see section
2c), whereas the Bubnova et al. (1995) one is (quasi-)
centered semi-implicit: furthermore, the present for-
mulation was developed for a new model with no con-
straint on being compatible with another model or sys-
tem. The present formulation can be summarized as fol-
lows: minimal and simplest equation set, (almost) fully
implicit (quasi-) centered time discretization, space dis-
cretization with consistent treatment of right- and left-
hand-sides of the governing equations, algebraic elim-
ination to derive the Helmholtz problem, and consistent
backsubstitution.

2. Formulation

a. Hydrostatic pressure and vertical coordinate

The ‘‘hydrostatic pressure’’ (denoted p) of Laprise
(1992) is defined as a pressure field in hydrostatic bal-
ance with f, the geopotential height. Thus

]p
5 2r, (2.1a)

]f

where r is the density. Equation (2.1a) defines p to
within an arbitrary additive horizontal field. The am-

biguity is lifted by further requiring that hydrostatic
pressure and pressure be equal at the top of the model,
taken here to be at constant pressure pT. Full pressure
(p) is then represented in the model as a perturbation
from p, and so

p 5 p exp(q9) ⇒ lnp 5 lnp 1 q9, q9 5 0,T (2.1b)

where subscript T denotes evaluation at the model top
and primes denote a perturbation quantity. In the hy-
drostatic limit hydrostatic pressure and full pressure be-
come identical, and a measure of departure from hy-
drostatic balance is defined by

]p
m [ 2 1, (2.2)

]p

referred to herein as the nonhydrostatic index.
Since r is strictly positive, p varies monotonically

with height and can be used to define a terrain-following
vertical coordinate:

p 2 pTh [ , (2.3)
p 2 pS T

where pS 5 pS(l, u) and the subscripts S and T re-
spectively, refer to evaluation at the surface and at the
top of the model.

To allow for a more general nonlinear relationship
between h and p than (2.3), and to keep a quasi-in-
variant formulation with little dependence on the exact
form of the relationship, the terrain-following vertical
coordinate of the model, denoted by Z, is taken to be
p*(h), the reference pressure profile. It is a monotonic
function of h, which is obtained from h(p, pS, pT) by
replacing the fields p, pS, and pT by their reference
values Z [ p*, ZS [ , and ZT [ respectively.p* p*S T

Thus, for the particular linear case (2.3),

Z 2 Z p 2 pT T5 ([h). (2.4)
Z 2 Z p 2 pS T S T

The reference or basic state is motionless and iso-
thermal with temperature T*. The reference potential
temperature u* and geopotential f*, respectively, are
therefore

2kZ Z
u* 5 T* , f* 5 2R T* ln , (2.5)d1 2 1 2p Z00 S

where k 5 Rd/cpd, Rd is the gas constant for dry air, cpd

is the specific heat of dry air at constant pressure, and
p00 [ 1015 hPa is a constant pressure.

Note that since the time discretization of the model
is (almost) fully implicit (see section 2c below), the
basic-state parameters are simply relaxation parameters,
which are chosen to accelerate the convergence of the
iterative scheme and ensure the stability of the model.

b. Governing equations

The governing equations are the forced nonhydrostat-
ic primitive equations:
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HdV
H H1 R T = lnp 1 (1 1 m)=f 1 f (k 3 V ) 5 F ,d ydt

(2.6)

˙ds ]Z
1 D 1 5 0, (2.7)

st ]Z

d lnu d u d˙[ ln 1 Z lnu*1 2dt dt u* dZ

˙d T p kZy u[ ln 2 k ln 2 5 F , (2.8)1 2 1 2[ ]dt T* Z Z

dw
Vd 2 mg 5 d F , (2.9)H Hdt

˙df d(f 2 f*) Z
2 gw 5 2 R T* 2 gw 5 0, (2.10)ddt dt Z

dqy qy5 F , (2.11)
dt

]f 1 ]p
5 2 , (2.12)

]Z r ]Z

p 5 rR T , (2.13)d y

where

dZ d ] ]
H˙ ˙Z [ , and [ 1 V · = 1 Z , (2.14)

dt dt ]t ]Z

is the substantive derivative following the fluid. Here,
VH is horizontal velocity, D is horizontal divergence,
Ty is virtual temperature, s [ ln(]p/]Z) 5 ln[(pS 2
pT)/(ZS 2 ZT)] is the mass variable and depends only
on the horizontal, qy is specific humidity of water vapor,
f is the Coriolis parameter, k is a unit vector along the
rotation axis of the earth, g is the vertical acceleration
due to gravity, and FH, F u, F y , and F are parameterizedqy

physical forcings. Equations (2.6)–(2.12) are, respec-
tively, the horizontal momentum, continuity, thermo-
dynamic, vertical momentum, vertical velocity, mois-
ture, and hydrostatic equations, and (2.13) is the equa-
tion of state, taken here to be the ideal gas law. A hy-
drostatic/nonhydrostatic switch dH has been introduced
into (2.9). When dH 5 0, (2.9) reduces to m 5 0. This
implies that p [ p from (2.1b) and (2.2), that (2.10)
decouples completely, and that the governing equations
then revert to the usual hydrostatic primitive equation
set. When dH 5 1, the original nonhydrostatic set is
recovered. Thus this set (see Tanguay et al. 1990) only
differs from the hydrostatic primitive equations by the
inclusion of the vertical acceleration term dw/dt.

The boundary conditions are the same for both the
nonhydrostatic and hydrostatic sets: periodicity in the
horizontal, and no motion across the top and bottom of
the atmosphere. Thus

Ż 5 0 at Z 5 Z and Z .S T (2.15)

c. Temporal discretization

The time discretization is the same as in Côté et al.
(1998b), and only the essential elements for what fol-
lows are recalled here. Equations (2.6)–(2.12) are first
integrated in the absence of forcing, and the parame-
terized forcing terms appearing on the right-hand sides
of (2.6)–(2.11) are then computed and added using the
fractional-step time method (Yanenko 1971).

The time discretization used to integrate the friction-
less adiabatic equations of the first step is (almost) fully
implicit/semi-Lagrangian. ‘‘Fully implicit’’ refers here
to the time discretization of (2.6)–(2.12) in the absence
of the parameterized forcings. However these forcing
terms are not treated fully implicitly but as a corrector
to an adiabatic predictor and, as described at the end of
this section, the trajectories are computed in a predictor–
corrector manner. Thus the nomenclature ‘‘(almost) ful-
ly implicit’’ has been adopted to concisely summarize
the time discretization.

Consider a prognostic equation of the form

dF
1 G 5 0. (2.16)

dt

Such an equation is approximated by time differences
and weighted averages along a trajectory determined by
an approximate solution to

22 Hdr d r V
H5 V (r, Z, t), 5 2r ,

2 ) )dt dt a
2dZ d Z˙5 Z(r, Z, t), 5 0, (2.17)
2dt d t

where r(l, u) is the position vector on the sphere of a
fluid element and a is the (constant) radius of the earth.
The vertical displacement is obtained neglecting accel-
eration, as is usual in semi-Lagrangian schemes, whereas
for the horizontal displacement the motion is constrained
to the sphere. Denoting by x3 5 {r, Z} the three-di-
mensional position vector, (2.16) is discretized as

n n21(F 2 F )

Dt

1 1
n n211 1 « G 1 2 « G 5 0, (2.18)1 2 1 2[ ]2 2

where cn 5 c(x3, t), cn21 5 c[x3(t 2 Dt), t 2 Dt],
c 5 {F, G}, t 5 nDt.

Note that this scheme is decentered along the trajec-
tory, as in Rivest et al. (1994), to avoid the spurious
resonant response arising from a centered approximation
in the presence of orography. Cubic interpolation is used
everywhere for upstream evaluations [cf. (2.18)] except
for the trajectory computations [cf. (2.17)], where linear
interpolation is used with no visible degradation in the
results.

Grouping terms at the new time on the left-hand side
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and known quantities on the right-hand side, (2.18) may
be rewritten as

n n21F F 1 2 2«
n n21 n211 G 5 2 G [ R , (2.19)1 2t t 1 1 2«

where t [ (1 1 2«)Dt/2. This yields the set of coupled
nonlinear equations (B.1) of appendix B for the un-
known quantities at the mesh points of a regular grid
at the new time t, the solution of which is discussed in
section 2e.

To ensure the stability of this implicit treatment, the
trajectory equation (2.17) is solved in a predictor–cor-
rector manner. This is done by first using the time-ex-
trapolated 3D wind at time t 2 Dt/2 to obtain a pre-
dicted estimate of the displacements [cf. (2.17)], and
also of the solution. These are then corrected by using
the time-interpolated wind at time t 2 Dt/2 to obtain
the final displacements and solution. Further iteration
of this procedure is possible, albeit at some cost, but
although available it has not to date been needed in
practice—whether this will however be an issue for
strongly nonhydrostatic flows remains to be seen.

d. Spatial discretization

The horizontal and vertical discretization are as in
Côté et al. (1998b): a variable-resolution discretization
on an Arakawa C grid is used in the horizontal with the
supplementary fields related to the inclusion of non-
hydrostatic effects located on the scalar grid. The es-
sential elements of the spatial discretization are pre-
sented in appendix A. The discretization is centered
almost everywhere and, hence, is almost everywhere of
second order in space. The only exception is in the
variable portion of the horizontal grid, where the com-
putation of the horizontal divergence is not exactly cen-
tered, but as argued in Fox-Rabinovitz et al. (1997), for
small uniform constant stretching the accuracy is still
second order.

The accuracy of the spatial discretization can be ver-
ified by examining the spectra of the discrete operators
of appendix A [cf. (A.16)–(A.17), (A.23)–(A.24)] and
comparing them to those of the underlying continuous
problems. In the l direction, the generalized eigenvalue
problem,

P L 5 « P(l)L , i 5 1, NI,ll i i i (2.20)

is a discretization of the problem of finding the Fourier
modes of period 2p, and for a uniform grid the discrete
modes are identical to the continuous modes except that
the eigenvalues are different. The error on the eigen-
value corresponding to the modes of wavenumber m is

2
2 42 mDl p m

22m 1 sin 5 2 1 HOT, (2.21)
21 2 1 2[ ]Dl 2 3NI

where HOT denotes ‘‘higher-order terms’’ and is there-
fore of second-order accuracy.

Similarly in the u direction, the generalized eigen-
value problem,

P Q 5 « P(u)Q , j 5 1, NJ,uu j j j (2.22)

is a discretization of the problem of finding the Legendre
polynomials (the zonal spherical harmonics), and the jth
discrete eigenvalue should converge to 2j(j 2 1). This
is verified numerically for the third mode [P2(sinu)].
The latitudes of the uniform grid are given by

(2j 2 NJ 2 1)
u 5 p, j 5 1, NJ. (2.23)j 2NJ

Fitting the form aNJb to the error computed with NJ 5
51, 71, 91, and 111 respectively, yields a ø 227.06, b
ø 21.9994, thus numerically confirming the formal sec-
ond-order accuracy.

In the Z direction, the generalized eigenvalue prob-
lem,

V (d 5 0)J 5 « V(Z)J , k 5 1, NK,ZZ H k k k (2.24)

is a discretization of the problem of finding the vertical
structure functions for P [cf. (B.5)] of the normal modes
of the linearized equations. The continuous problem is
given by

L(L 1 1)J 5 mJ, LJ | 5 0,ZT

(k 1 L)J | 5 0,ZS
(2.25)

where L [ ]/] lnZ. Equation (2.25) can be solved an-
alytically and the eigenvalues (m) are the roots of the
transcendental equation:

kl ZStan(lH ) 5 , H 5 ln ,1 21 k ZT2l 1 2
4 2

1
2l 5 2m 2 . (2.26)

4

Taking ZT 5 10 hPa, ZS 5 1000 hPa, and k 5
0.285 491 217 95, the first three roots are:

1) 20.218 119 108 289 177 3,
2) 20.811 620 026 369 796 0, and
3) 22.225 995 779 229 059.

The convergence to the third eigenvalue is investigated
numerically by successive refinement of the vertical
grid:

(NK 2 k)
Z 5 Z exp 2 H , k 5 1, NK. (2.27)k S [ ](NK 2 1)

Fitting the form a(NK 2 1)b to the error computed
with NK 5 51, 71, 91, and 111, respectively, yields a
ø 20.837, b ø 22.0018, again numerically confirming
the formal second-order accuracy.
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e. Solving the coupled nonlinear set of discretized
equations

After spatial discretization the coupled set of nonlin-
ear equations still has the form of (2.19). Terms on the
right-hand side, which involve upstream interpolation,
are first evaluated. The coupled set is rewritten as a
linear one (where the coefficients depend on the basic
state), plus a nonlinear perturbation, which is placed on
the right-hand side and which is relatively cheap to eval-
uate. The set is then solved iteratively using the linear
terms as a kernel, and reevaluating the nonlinear terms
on the right-hand side at each of the iterations using the
most recent values.

The nonlinearity is due mostly to the logarithmic
terms ln p and ln u in the governing equations. The
logarithmic nonlinearity is the mildest one possible, and
provided the reference state is chosen appropriately the
fixed point iterations will converge. The convergence,
and optimization, of the iterative scheme were analyzed
in Côté and Staniforth (1988). Two iterations, the min-
imum for stability, have been found sufficient for prac-
tical convergence in all our work since (Côté and Stan-
iforth 1990; Côté et al. 1993, 1998b). Note however that
because of the outer iteration the total number of iter-
ations (and evaluation of the nonlinear terms) is 4, giv-
ing a scheme that is more robust than recently proposed
predictor–corrector-like schemes at the European Centre
for Medium-Range Weather Forecasts (Cullen et al.
2000) and Météo-France (I. G. Gospodinov 2000, per-
sonal communication).

The linear set can be algebraically reduced to the
solution of a 3D elliptic boundary value (EBV) problem
from which the other variables are obtained by back-
substitution. This EBV problem for P is vertically sep-
arable and it is solved efficiently with the same solver
described in Côté et al. (1998b)—the nonhydrostatic
factors require a simple renormalization of the separa-
tion constants. The nonseparability in the horizontal is
due to the Coriolis terms on the rotated grid, which are
O( fDt). The preconditioned conjugate gradient method
used in Côté et al. (1998b) requires very few iterations
to converge, and we can stop at a fixed and small number
of iterations that diminish with diminishing equivalent
height. The preconditioner is obtained by replacing

by a0¹2, with a0 taken as2¹f

1
a 5 minimax0 2 21 21 1 t f

1 1
5 1 1 . (2.28)

2 21 22 1 1 4t V

The linearization and the derivation of the 3D EBV
problem along with its vertical separation are outlined
in appendix B. Performing a vertical separation in a
separable 3D EBV problem, as in the present work, has
the virtue that horizontal and vertical scales no longer
mix, something that we speculate may have been a

source of the convergence difficulties reported in Ska-
marock et al. (1997) in the context of the solution of a
nonseparable EBV problem. The direct solver adopted
herein as a preconditioner for the horizontal 2D EBV
problems that result from the vertical separation pro-
cedure has the virtue that it directly handles the strongest
horizontal variations. Only a couple of iterations are
then needed to accommodate the slowly varying non-
separable Coriolis terms that result from the use of a
rotated lat–lon coordinate system. However these iter-
ations can be avoided by simply handling the nonse-
parable Coriolis terms together with the nonlinear ones,
and this strategy has been adopted in the model since
submission of the present paper. It remains to be seen
whether the rapid convergence, observed for hydrostatic
and mildly nonhydrostatic flows, of the iterative meth-
ods adopted herein also holds for strongly nonhydrostat-
ic ones.

3. Results
The nonhydrostatic version of the Global Environ-

mental Multiscale (GEM) model has been tested with
real-data cases both at low and high resolutions. The
global case at low resolution is a sensitivity test to il-
lustrate the closeness of the results of the nonhydrostatic
and hydrostatic versions for the hydrostatic regime, and
two mesoscale events at high resolution are used to
provide a preliminary assessment of the accuracy of the
nonhydrostatic version. The experimental configura-
tions are summarized in Table 1, where the diffusion
coefficient is that of horizontal Laplacian diffusion, the
digital filter refers to that of Fillion et al. (1995), and
the physical parameterizations are based on the Re-
cherche en Prévision Numérique (RPN) Physics 3.6
package described in Mailhot et al. (1998) with appro-
priate modifications (summarized later) for mesoscale
applications. In all the experiments, ZT and ZS are taken
as 10 and 1000 hPa, respectively, and T* is 200 K. As
in Côté et al. (1998a), the variable-resolution strategy
is used to hindcast the mesoscale events. Note also that
all computations are performed on a NEC SX-4 super-
computer at 32-bit arithmetic precision, except that 64-
bit precision is used to solve the elliptic boundary value
problem associated with the implicit time discretization.
The experiments are all initiated from hydrostatic initial
conditions, and the supplementary fields needed for the
nonhydrostatic experiments are computed as described
in appendix C.

Details of the experiments are described in the fol-
lowing subsections. The Courant–Friedrichs–Levy
(CFL) numbers for advection are defined locally as

Dt |u| |y |
horizontal CFL number [ max , ,1 2a cosu Dl Du

and

˙|Z |
vertical CFL number [ Dt ,

DZ
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TABLE 1. Model configurations for the global, suete and VORTEX cases.

Case Global Suete VORTEX

Horizontal resolution
Vertical resolution
Time step size
Integration period
Poles of computational mesh
Digital filter span

28 uniform
28 levels
60 min
48 h
Rotated
6 h

0.028 variable
35 levels
1 min
12 h
Rotated
Off

0.048 variable
35 levels
1 min
18 h
Rotated
3 h

Diffusion coefficient
Sponge layer
Off-centering coefficient (e)
Topography
Physics

Zero
Vertical
Zero
Off/on
Off/full

500 m2/s21

None
0.1
On
Partial

500 m2/s21

None
0.1
On
Partial

TABLE 2. Statistics of the global sensitivity test.

Difference statistics

Plain dynamics

Maxnorm Avg Rms

Physics and topography

Maxnorm Avg Rms

24-h 500-hPa height (m)
48-h 500-hPa height (m)
24-h MSLP (hPa)
48-h MSLP (hPa)

0.037
0.178
0.031
0.032

20.010
20.019

0.000
0.000

0.012
0.022
0.002
0.003

2.378
4.944
0.251
0.314

20.016
20.015

0.000
0.000

0.284
0.427
0.036
0.056

where u, y, and Ż are the l, u, and Z components of
the wind, respectively. Unless otherwise mentioned, the
poles and the equator refer to those of the computational
mesh rather than those of the geographical system.

a. The global case

The hydrostatic assumption is globally considered to
be well respected for scales larger than 10 km, and
nonhydrostatic effects are negligible for scales larger
than 100 km (e.g., Gill 1982). A global low-resolution
experiment is thus conducted to test how close the fore-
casts of the two versions are for large- and synoptic-
scale flow. As summarized in Table 1, the global sen-
sitivity test is conducted with a uniform resolution of
28 in both the zonal and meridional directions, and with
the 28 vertical levels of the operational configuration.
The poles of the computational mesh are rotated with
respect to the geographical ones, and are located in areas
where the winds are climatologically relatively uniform
in order to minimize the differences in the vicinity of
the numerical poles. The initial atmosphere is obtained
via an interpolation of a 16-level Canadian Meteoro-
logical Centre (CMC) isobaric analysis on a 400-point
3 200-point latitude–longitude grid, valid at 0000 UTC
19 July 1996. A digital filter is employed to control
high-frequency oscillations with periods shorter than 6
h. A large time step of 1 h is chosen such that the
maximum horizontal CFL number is about 2 around the
equator of the computational mesh, while the maximum
vertical CFL number is much less than 1 for this case.
The total integration time is 48 h. The horizontal dif-
fusion is turned off in order to better highlight the dif-
ferences between the hydrostatic and nonhydrostatic
forecasts. These differences are summarized in Table 2,

where ‘‘plain dynamics’’ refers to the experiment with-
out physics and topography, and ‘‘physics and topog-
raphy’’ refers to the experiment described below with
physics and topography included.

The nonhydrostatic version of the GEM model is first
tested without physics and topography, and the same
configuration is used to produce the hydrostatic control.
The 24-h 500-hPa height difference statistics of the non-
hydrostatic and hydrostatic forecasts are displayed in
Table 2. The rms difference is 0.012 m, and the max-
imum absolute (maxnorm) difference is only 0.037 m.
The 24-h mean sea level pressure (MSLP) differences
are also very small as seen in Table 2. The nonhydrostat-
ic index (m) at hour 24 is O(1027) throughout the whole
domain, indicating that the vertical acceleration is ex-
tremely weak and that nonhydrostatic effects are indeed
negligible for this case. The corresponding 48-h differ-
ence statistics (see Table 2) are very similar to the 24-
h ones, except that the magnitudes are generally larger.

The sensitivity in the presence of both physics and
topography is also examined. The full package of op-
erational physical parameterizations is used for both the
hydrostatic and nonhydrostatic integrations, and statis-
tics of the differences are summarized in Table 2. The
24-h 500-hPa rms height difference is 0.284 m, while
the maximum difference is 2.378 m, and the average
difference is only 20.016 m. The 24-h MSLP rms dif-
ference is 0.036 hPa, while the maximum absolute dif-
ference is only 0.251 hPa, and the bias is negligible.
The 48-h differences (see Table 2) are generally of the
same order of magnitude but somewhat larger.

The above results may be compared to those of a pre-
decessor of the Canadian Mesoscale Compressible Com-
munity model (MC2; Tanguay et al. 1990), where the
test was carried out without topography but with simple
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FIG. 1. (a) The 10-m wind valid at 0000 UTC 22 Dec 1993, as
simulated by the nonhydrostatic GEM model after 6 h of integration;
wind barbs (full, 10 kt; half, 5 kt) at approximately every 10 km.
Winds exceeding 30 kt are shaded (interval 5 kt). The orography is
contoured every 50 m. Sydney is marked with S; Grand-Étang is
marked with G. (b) Same as in (a) except valid at 0300 UTC 22 Dec
1993 (9-h forecast).

TABLE 3. The 35 h levels for the suete and VORTEX cases.

0.0000
0.1007
0.2855
0.5076

0.0097
0.1342
0.3284
0.5519

0.0244
0.1695
0.3726
0.5952

0.0448
0.2056
0.4175
0.6373

0.0705
0.2444
0.4626
0.6779

0.7168
0.8691
0.9607

0.7530
0.8916
0.9736

0.7862
0.9118
0.9850

0.8165
0.9300
0.9950

0.8441
0.9462
1.000

physical parameterizations—a simple form of surface
momentum, heat, and moisture fluxes, and a moist con-
vective adjustment. It was reported in Tanguay et al.
(1990) that the nonhydrostatic and hydrostatic forecasts
for the 24-h 500-hPa height were identical up to three
significant figures; that is, the difference was less than
10 m (how much less was not stated) compared to the
0.012-m difference reported herein. Note however that
this was not an ‘‘identical twin’’ experiment since dif-
ferent vertical coordinates were employed in their hy-
drostatic and nonhydrostatic integrations. The GEM mod-

el’s forecasts can also be compared to those presented in
Qian et al. (1998), where an identical twin hydrostatic–
nonhydrostatic experiment was carried out with topog-
raphy but without physics. Those authors found that the
maximum magnitude of the 48-h 500-hPa height differ-
ence between the nonhydrostatic and the hydrostatic fore-
casts was greater than 15 m (their Fig. 17c) compared
to the 5-m difference observed herein.

The above initial analysis used by the GEM model
was arbitrarily chosen from the CMC archives, and sim-
ilar results were obtained in tests with other randomly
chosen analyses. When tests were repeated using much
larger time steps, for example, 2 or 3 h, in order to test
the stability of the nonhydrostatic version, the only im-
pact was a gradual increase in the differences due to
increasing time-truncation error. It is concluded that the
nonhydrostatic dynamics of the GEM model for large-
and synoptic-scale flow is very close to the hydrostatic
dynamics, confirming that running a global nonhydro-
static model for hydrostatic-scale flows does not intro-
duce a spurious nonhydrostatic response.

b. The suete case

The suete case is a small-scale downslope wind event
that occurs regularly on the western side of the Cape
Breton Highlands, Nova Scotia, Canada. It was studied
in Benoit et al. (1997) using the Canadian MC2 model,
and in Côté et al. (1998a) using the hydrostatic version
of the GEM model. Both studies concluded that the
dynamics of this mild windstorm was dominated by the
orographic forcing, and that nonhydrostatic effects were
relatively unimportant. It is thus considered to be a good
test of the dynamical balance of a nonhydrostatic model
at high resolution.

Both hydrostatic and nonhydrostatic hindcasts of the
suete event described in Côté et al. (1998a) are presented
here using the experimental configuration summarized in
Table 1. It has been found that this particular event is
not very sensitive to the number of vertical levels nor to
the precise value of the horizontal diffusion coefficient.
In Côté et al. (1998a), the operational configuration of
28 levels and a horizontal diffusion coefficient of 2500
m2 s21 were adopted to facilitate comparison with the
Benoit et al. (1997) simulations. Here, however, these
parameters have been changed to be the same as for the
Verification of the Origins of Rotation in Tornadoes Ex-
periment case presented in the following subsection,
which has 35 levels (shown in Table 3) and a five-times-
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FIG. 2. Time series of MSLP at Sydney and Grand-Étang: non-
hydrostatic forecasts (solid curves), hydrostatic forecasts (dashed
curves), and observations (Sydney, upward pointing triangles; Grand-
Étang, downward pointing triangles).

FIG. 4. Vertical cross section along the arrow plotted in Fig. 1a of
the dimensionless nonhydrostatic index (m) and the wind speed. Here,
m is contoured in light lines, dotted negative, with contours at 6(0.5,
1.0, 1.5, . . .) 3 1023; winds exceeding 40 kt are shaded (interval 10
kt); the ordinate is h.

FIG. 3. Same as in Fig. 2 but for the surface (10 m) wind.

FIG. 5. The 1.5-km-altitude composite radar reflectivity image
(dBZ) valid at 0200 UTC 8 May 1995, over Oklahoma and neigh-
boring states.

smaller diffusion coefficient of 500 m2 s21. All other
configuration parameters are identical to those of Côté
et al. (1998a). The GEM model’s orography, initial anal-
ysis, and rotated variable-resolution mesh are, respec-
tively, shown in Figs. 12, 13a, and 15 of Côté et al.
(1998a). The horizontal resolution is 0.028 in the central
domain with each successive mesh length increasing by
10% in each of the four coordinate directions when mov-
ing away from this high-resolution subdomain. The initial
atmosphere, valid at 1800 UTC 21 December 1993, is
obtained via interpolation from a 15-level isobaric anal-
ysis defined on a 360-point 3 180-point Gaussian grid.
Physical parameterizations are as in the Côté et al.
(1998a) integration: no gravity wave drag, no convection,
and simple condensation instead of the Sundqvist param-
eterization. The total integration time is 12 h with a 1-
min time step. The maximum horizontal CFL number in
the central domain is about 2.0 and the maximum vertical
CFL number is about 1.5 during both the hydrostatic and
nonhydrostatic integrations.

The 6-h 10-m wind forecast for the nonhydrostatic

configuration of the GEM model is presented in Fig. 1a,
where the orography is contoured every 50 m, the up-
stream station in Sydney is marked with S, and the
station in Grand-Étang is marked with G. A strong
downslope wind occurs on the lee side immediately off-
shore while the surrounding winds are weaker. The 9-
h forecast, Fig. 1b, is shown for comparison with Benoit
et al. (1997) and Côté et al. (1998a). The wind at this
time however is more uniform over the whole region.
The hydrostatic forecast (not shown) is very close to
the nonhydrostatic one, consistent with the findings of
the aforementioned studies.

The MSL pressure and surface wind forecasts of both
the hydrostatic and nonhydrostatic configurations have
been compared to observations at the (upstream) Sydney
and (downstream) Grand-Étang stations, and time series
are presented in Figs. 2 and 3, respectively. The non-
hydrostatic MSLP (Fig. 2) forecasts (solid curves) are
barely distinguishable from the hydrostatic ones (dashed
curves), and all agree quite well with the observations
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FIG. 6. The 353- 3 415-point grid used for the VORTEX case with a 240- 3 323-point
uniform resolution (0.048) window. For clarity every third point in each direction is plotted.

(black triangles). The time series of surface wind (Fig.
3) at the two stations show that the nonhydrostatic fore-
casts (solid curves) are very close to the hydrostatic
ones (dashed curves). They also agree quite well with
the observations at the upstream Sydney station, while
at the downstream Grand-Étang station the agreement
is not quite as good, due partially to the gustiness of
the observed winds, something that the model does not
properly represent.

To better understand why the nonhydrostatic forecast
is so similar to the hydrostatic one, a vertical cross
section of the nonhydrostatic index m at 6 h, across the
mountain crest and along the arrow shown in Fig. 1a,
is plotted in Fig. 4. It is seen that the nonhydrostatic
index is for the most part confined to low levels (h k
0.95) by the strong stratification of the flow, and thus
nonhydrostatic effects are significantly suppressed. The
wind speed is also displayed in Fig. 4, and the region
of maximum wind speed is well correlated to the non-
hydrostatic index.

This experiment demonstrates that the nonhydrostatic
GEM dynamics can maintain proper hydrostatic balance
in weakly nonhydrostatic situations. It also indicates that
the model is capable of making a reasonable mesoscale

forecast despite the lack of a high-resolution initial anal-
ysis and adequate physical parameterizations.

c. The VORTEX case

The Verification of the Origins of Rotation in Tor-
nadoes Experiment (VORTEX) project was conducted
during the springs of 1994 and 1995 with the primary
purpose of testing a set of hypotheses concerning tor-
nadogenesis and tornado dynamics (Rasmussen et al.
1994). Data were also collected that are suitable for the
study of convective storm dynamics and the structure
of features in the boundary layer prior to the onset of
convection (Bluestein et al. 1998). One of the interesting
events observed in the VORTEX project is a typical
squall line that occurred on 7–8 May 1995, and which
is referred to here as the VORTEX case for convenience.
This case was first studied by Wang et al. (1996), further
analyzed by Xue et al. (1998a), and simulated by Wang
et al. (1998) with a nonhydrostatic model and by Xue
et al. (1998b) by data assimilation. The present goal is
to demonstrate the capability of the GEM model to fore-
cast the positions of the mesoscale squall line and the
associated precipitation patterns, despite the inadequa-
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FIG. 7. (a) Specific total cloud water (including precipitation) at level h 5 0.844 for the 14-h
hydrostatic forecast. Contours are at 1, 5, 10, 25, 50, 100, 250, and 500 3 1025 kg kg21. (b) Vertical
cross section along the arrow plotted in (a) of the 14-h hydrostatic forecast of the specific total cloud
water.

cies of a synoptic-scale initial analysis and the physical
parameterizations employed.

At 1200 UTC 7 May 1995, a clearly defined dryline
was observed along the New Mexico–Texas border. As
it moved eastward into Texas, a band of convective
clouds started to develop along the dryline around 1600
UTC, and more convective cells developed to the south
of the dryline in western Texas within the next 2 h. The
convection soon intensified and occurred along a line,
which further evolved into a typical midlatitude squall
line as it moved across the western border of Oklahoma
around 2000 UTC. This squall line lasted more than 10
h and extended more than 1000 km in the south–north
direction. Figure 5 shows the 1.5-km-altitude composite
radar reflectivity image valid at 0200 UTC 8 May 1995,

when the squall line was at its mature stage with a solid
leading convective edge and an associated trailing strat-
iform precipitation band parallel to the convective line.
The cloud in the northeast sector of the major convective
line corresponds to the tail of a relatively minor squall
line formed a few hours earlier than the major one, and
attention here is focused on the major squall line in
central Oklahoma.

With the experimental configuration summarized in
Table 1, both the hydrostatic and nonhydrostatic ver-
sions of the GEM model are used to simulate the squall
line. The horizontal resolution is chosen to be 0.048
(ø4.4 km) so that the uniform high-resolution (240- 3
323-point) window of the 353- 3 415-point mesh covers
the evolution of the entire event. Figure 6 shows the
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FIG. 8. (a) Same as in Fig. 7a but for the nonhydrostatic model. (b) Same as in Fig. 7b but for the
nonhydrostatic model.

grid system of the GEM model for simulating this VOR-
TEX case. The computational poles are rotated with
respect to the geographical ones in order to center the
uniform high-resolution window over the area of inter-
est. The horizontal resolution is again smoothly de-
graded by the same 10% factor per successive mesh
length when moving away from the uniform-resolution
subdomain. Thirty-five vertical levels are adopted here,
instead of the operational 28 levels, to better resolve the
strong convection. The horizontal diffusion coefficient
of 500 m2 s21 is kept relatively small in order not to
unduly smooth small-scale features. The total integra-
tion time is 18 h with a 1-min time step, and the max-
imum horizontal CFL number is about 2.0 in the central
domain during both the hydrostatic and nonhydrostatic

integrations. The GEM model is initiated from an in-
terpolation of a 21-level CMC analysis valid on a 360-
3 180-point Gaussian grid at 1200 UTC 7 May 1995,
when no convection was present along the dryline at
the New Mexico–Texas border. The digital filter of Fil-
lion et al. (1995) is employed for the model to reach
dynamical balance with a cutoff frequency of 3 h. The
physical parameterizations are based on the RPN Phys-
ics 3.6 package (Mailhot et al. 1998), but without the
gravity wave drag and convective parameterizations that
were designed for large-scale applications. For conden-
sation, the mixed-phase cloud scheme of Tremblay et
al. (1996) is used. The supercooled liquid water param-
eterization in this cloud scheme is turned off since its
formulation is not appropriate for vertical motions stron-
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FIG. 9. Vertical cross section in the frontal region, between A and
B in Fig. 8b of the 14-h nonhydrostatic forecast of the vertical motion
(v [ dp/dt) and the dimensionless nonhydrostatic index (m). Here,
v is contoured in light lines, dotted negative, with contours at 6(5,
15, 25, . . .) Pa s21; m is contoured in heavy lines, dotted negative,
with contours at 6(0.5, 1.0, 1.5, . . .) 3 1023.

ger than 1 m s21, and the strong convection in this case
leads to vertical motion as strong as 10 m s21. The
physical parameterizations are thus not adequate for ful-
ly simulating the precipitation, but are nevertheless ad-
equate for testing the model dynamics. The 14-h fore-
casts are valid at 0200 UTC 8 May 1995, and the specific
total cloud water (including precipitation) at the level
h 5 0.844 is computed for subjective comparison with
the observations shown in Fig. 5, which corresponds to
precipitation at a height of approximately 1.5 km.

Figure 7a presents the 14-h hydrostatic forecast of the
specific total cloud water at the level h 5 0.844. The
position of the hydrostatically forecast squall line is nearly
perfect, although the convective line is slightly distorted
in the middle section with relatively weak and scattered
precipitation. Figure 7b shows a vertical cross section of
the 14-h hydrostatic forecast of the total cloud water across
the squall line, along the arrow plotted in Fig. 7a. The
shape of the cloud (Fig. 7b) is reasonably well simulated
with a prominent anvil in front of the convective line,
although the cloud above the convective line is not quite
connected to the cloud over the stratiform region.

Figure 8a shows the 14-h nonhydrostatic forecast of
the total cloud water at the level h 5 0.844, and Fig.
8b shows a vertical cross section across the squall line
along the same arrow shown in both Figs. 7a and 8a.
Comparing the nonhydrostatic forecast (Fig. 8a) to the
observations (Fig. 5) and to the hydrostatic forecast
(Fig. 7a), it is seen that the position of the forecasted
squall line remains nearly perfect, and the slight dis-
tortion of the convective line in the middle section is
improved in the nonhydrostatic simulation. The con-
vection in the middle section of the nonhydrostatic sim-
ulation is stronger than that of the hydrostatic one, and
the squall line is better defined in the nonhydrostatic
simulation. In addition, the nonhydrostatic precipitation
pattern (Fig. 8a) resembles the radar observations (Fig.
5) slightly better than the hydrostatic one (Fig. 7a) does,

with a better resolved stratiform precipitation band in
the southern section of the squall line. The shape of the
cloud is also improved in the nonhydrostatic simulation
(Fig. 8b) inasmuch as the convective clouds are better
connected and the stratiform region is more clearly sep-
arated from the convective line, reflecting a stronger
inflow from the lower boundary in the nonhydrostatic
integration. The simulated stratiform regions (Figs. 7a
and 8a) are not as wide as in the observations (Fig. 5),
which may be attributed to the coarse initial analysis
and the inadequacies of the physical parameterizations.

Figure 9 presents a vertical cross section in the frontal
region, between A and B of Fig. 8b of the 14-h nonhy-
drostatic forecast of the vertical motion (v [ dp/dt) and
the dimensionless nonhydrostatic index (m). The mecha-
nism that drives the eastward movement of the convective
line is well illustrated with a shift of the maximum con-
vection created by the upward acceleration immediately
in front of the convective line, and downward acceleration
right behind the convective line. During the integration
the vertical acceleration (gm) reaches a maximum absolute
value of about 0.1 m s22, but the nonhydrostatic effects
are however quite localized horizontally, being confined
to areas of strong convection.

Finally, the maximum vertical CFL number is 2.7
during the nonhydrostatic integration, while the hydro-
static integration attains the much larger value of 6.1,
indicating that the strong vertical wind is not properly
treated by the hydrostatic dynamics.

4. Conclusions

The hydrostatic formulation of Côté et al. (1998b)
has been generalized to include nonhydrostatic effects
using a terrain-following coordinate based on Laprise’s
(1992) hydrostatic pressure. The new version costs ap-
proximately 10% more than the hydrostatic one, and the
efficiency in integrations performed to date is well main-
tained in the nonhydrostatic model by the use of the
relatively large time steps permitted by the (almost) ful-
ly implicit semi-Lagrangian discretization.

Results indicate that for large- and synoptic-scale flow
the nonhydrostatic dynamics of the GEM model is highly
consistent with that of its hydrostatic subset. For mesoscale
flows, the impact of representing nonhydrostatic effects is
stronger, and appears physically realistic, despite some in-
adequacies of the physical parameterizations. The thor-
oughness of this assessment is however limited by the
absence of verifying mesoscale analyses.

Development is continuing on the GEM forecasting
system and, for example, the GEM model is now cou-
pled to state-of-the-art microphysics packages, making
it a powerful tool for mesoscale case studies in an op-
erational context. Nevertheless much work remains to
be done, particularly on rigorous testing of the model’s
performance for strongly nonhydrostatic flows. One as-
pect is model validation against known analytic or nu-
merically converged solutions. Another is the model’s
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efficiency and robustness in the strongly nonhydrostatic
regime. It remains to be demonstrated that sufficiently
large time steps can be used to offset the possible in-
creased cost (particularly in the presence of steep ter-
rain) of iterating the Helmholtz solver and nonlinear
terms to an adequate level of convergence—to accom-
plish this, thorough experimentation will need to be per-
formed using a quantitative convergence measure.
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Laprise for many fruitful discussions in the initial phase
of this project.

APPENDIX A

Spatial Discretization

a. Horizontal discretization and finite-differencing

The scalar grid, the set of points where the scalar
fields are defined, is described by giving a list of lon-
gitudes (l) and a list of latitudes (u), of size NI and NJ,
respectively. Thus

{(l , u ), i 5 1, NI; j 5 1, NJ}.i j (A.1)

The grid points satisfy the constraints

p p
0 # l , 2p, l 5 0, 2 , u , . (A.2)i 1 j2 2

Note that the poles do not belong to the scalar grid. It
is convenient to introduce the grid extensions

l 5 l 2 2p, l 5 l 1 2p0 NI NI11 1

p p
u 5 2 , u 5 , (A.3)0 NJ112 2

and grid differences

Dl 5 l 2 l , i 5 0, NI, (Dl 5 Dl )i i11 i 0 NI

Dsinu 5 sinu 2 sinu , j 5 0, NJ.j j11 j (A.4)

The grid points of the zonal wind image (U) are lo-
cated at the same latitudes as the scalar grid points but
at longitudes situated halfway between those of the sca-
lar grid. Thus

{(l̃ , u ), i 5 1, NI; j 5 1, NJ}i j

(l 1 l )i i11l̃ 5 , i 5 1, NI. (A.5)i 2

An extension and differences are also introduced for the
U grid:

l̃ 5 l̃ 2 2p, l̃ 5 l̃ 1 2p0 NI NI11 1

Dl̃ 5 l̃ 2 l̃ , i 5 0, NI. (A.6)i i11 i

The grid points of the meridional wind image (V) are
located at the same longitudes as the scalar grid points
but at latitudes situated halfway between those of the
scalar grid. Thus

{(l , ũ ), i 5 1, NI; j 5 1, NJ 2 1}i j

(u 1 u )j j11
ũ 5 , j 5 1, NJ 2 1. (A.7)j 2

An extension and differences are similarly introduced
for the V grid:

p p
ũ 5 2 , ũ 50 NJ2 2

Dsinũ 5 sinũ 2 sinũ , j 5 0, NJ 2 1. (A.8)j j11 j

Note that the wind images both vanish at the poles,
and we do not need to carry them there.

The images of the gradient vector of a scalar field f
are given by

cosu 1 ]f ]f
2=f 5 ê 1 cos u ê , (A.9)l u21 2a a ]l ] sinu

and each component is computed with a centered dif-
ference. This gives for the zonal direction

f 2 f]f i11, j i , j
5 , (f [ f ), (A.10)NI11, j 1, j)]l Dlii , j

where the result is on the U grid, likewise for the me-
ridional direction

f 2 f]f i , j11 i , j2 2cos u 5 cos ũ , (A.11)j)] sinu Dsinuji , j

the result being on the V grid.
The horizontal divergence of the wind is given by

1 ]U ]V
HD 5 = · V 5 1 (A.12)

2cos u ]l ] sinu

and is computed as

U 2 U V 2 V1 i , j i21, j i , j i , j21D 5 1 ,i j 2cos u Dl̃ D sinũj i21 j21

(U [ U , V , V [ 0), (A.13)0, j NI, j i,0 i,NJ

which is centered in the case of a uniform grid and in
the uniform portion of a variable grid.

To compute the horizontal Laplacian of the scalar f
2 2R 5 a ¹ f, (A.14)

the discrete gradient and divergence operators are ap-
plied on f in succession giving

P J P R 5 [P9 J P 1 P J P ]f,(u) (l) ll uu (l)(u)

(A.15)

where
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 1 1 1 1
2 2

Dl Dl Dl Dl0 1 1 0

1 1 1 1
2 2

Dl Dl Dl Dl Dl̃ 1 1 2 20   Dl̃ 11P 5 , P 5 5 5   (l) ll5 Dl2 
Dl̃NI21 1 

5 5
DlNI21

1 1 1 1 2 2
Dl Dl Dl DlNI NI21 NI21 NI 

(A.16)

and

 Dsinũ0

2cos u1 Dsinũ0 Dsinũ1 2 Dsinũ1 cos u1P 5 , P 59   (u ) (u)5 5 
DsinũNJ21 

DsinũNJ21 
2cos uNJ 

Puu (A.17)
2 2 cos ũ cos ũ1 12

Dsinu Dsinu1 1

2 2 2 2cos ũ cos ũ cos ũ cos ũ1 1 2 22 21 2Dsinu Dsinu Dsinu Dsinu1 1 2 2 2cos ũ25 5 5 , 
Dsinu2

2 2 2cos ũ cos ũ cos ũNJ22 NJ21 NJ215 2 21 2Dsinu Dsinu DsinuNJ22 NJ21 NJ21

2 2cos ũ cos ũNJ21 NJ21 2
Dsinu DsinuNJ21 NJ21 

with a normalization chosen such that all the matrices
are symmetric.

b. Coriolis terms

Cubic Lagrange interpolation is used to obtain V on
the U grid and U on the V grid for the Coriolis terms.
The wind images U and V are coupled by the Coriolis
terms so

A 5 U 2 t f Int (V ), B 5 V 1 t f Int (U ), (A.18)U U V V

where f U and f V are the U-grid and V-grid Coriolis

parameter, respectively, and IntU and IntV are the cubic
Lagrange interpolators to the U grid and V grid, re-
spectively.

The decoupling of the two wind images required by
the elimination procedure [cf. (B.8)] is done with pre-
conditioned Richardson iterations. Thus

2 2 (iter21) 2 (iter21){A9 1 t f* U 2 t f Int [ f Int (U ]}U U U V V(iter)U 5
2 2(1 1 t f* )U

2 2 (iter21) 2 (iter21){B9 1 t f* V 2 t f Int [ f Int (V ]}V V V U U(iter)V 5
2 2(1 1 t f* )V
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A9 5 A 1 t f Int (B),U U

B9 5 B 2 t f Int (A), (A.19)V V

where and are relaxation parameters taken here2 2f * f *U V

as and , respectively. The parameter controlling2 2f fU V

the convergence is ( ft)2 and two iterations are sufficient
in practice. This scheme combined with the discrete
gradient and divergence operators gives the discrete dis-
torted Laplacian ( ) appearing in (B.18). Thus2¹f

21
1 ] ] 1 2t f IntU U2¹ 5f 2[ ][ ]cos u ]l ] sinu t f Int 1V V

 1 ]
2 a ]l 

3 . (A.20) 
2cos u ] 

2a ] sinu 

c. Vertical discretization and finite-differencing

There is no staggering of the variables in the vertical,
and the equations where a vertical derivative appears
are discretized layer by layer with a centered approxi-
mation. For example (B.9) is discretized as

C CDX D 1 D R 1 Rk k11 k k11 k1 5 ,
DZ 2 2k

k 5 1, NK 2 1, (A.21)

where NK is the number of levels. The above gives an
implicit system of equations, which completed by the
boundary conditions (2.15) is invertible. This is the
same procedure as in Tanguay et al. (1989) and Côté et
al. (1998b) but applied here to the nonhydrostatic equa-
tion set.

The discrete representation, including the boundary
conditions, of R 5 L(L 1 1)P appearing in (B.18) is

V(Z)R 5 V P,ZZ (A.22)

where

 DZ DZ1 1

DZ DZ 1 DZ DZ1 1 2 2 1
V(Z ) 5 DZ 5 (A.23) 24

5 DZ 1 DZ DZNK22 NK21 NK21 
DZ DZNK21 NK21 

2 2˜ ˜ Z d RT*Z Z1 H 1 12 2
2 2DZ g t DZ1 1

2 2 2 2˜ ˜ ˜ ˜Z Z Z Z1 1 2 22 2
DZ DZ DZ DZ1 1 2 2 2Z̃2V 5 5 5 . (A.24) ZZ DZ2

2 2 2˜ ˜ ˜Z Z ZNK22 NK21 NK215 2 2
DZ DZ DZNK22 NK21 NK21

2 2˜ ˜Z ZNK21 NK21 2 2 kZNKDZ DZNK21 NK21 

APPENDIX B

Linearization and Derivation of the 3D Elliptic-
Boundary-Value Problem

The linearization and the derivation of the 3D EBV
problem are outlined here. The derivation is in contin-
uous spatial form to simplify the development, but it is
relatively straightforward to obtain the discretized form.

The set of nonlinear equations resulting from the time
discretization can be written as

HV
H H1 R T = lnp 1 (1 1 m)=f 1 f (k 3 V ) 5 Rd yt

˙1 T p kZy uln 2 k ln 2 5 R1 2 1 2[ ]t T* Z Z

˙s ]Z
c1 D 1 5 R

t ]Z

w
Vd 2 mg 5 RH t
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˙(f 2 f*) Z
w2 R T* 2 gw 5 R ,dt Z

(B.1)

where t 5 (1 1 2«)Dt/2.
First, f is split into a reference part plus a pertur-

bation:

f 5 f*(Z) 1 f 1 f9.S (B.2)

Linearization then proceeds with respect to the follow-
ing set of variables:

H ˙f9, V , w, Z9, s, q9. (B.3)

For example, the variables Ty , p, and m are expanded as

T 5 T* 1 T9 1 · · · , p 5 Z 1 p9 1 · · ·y

m 5 0 1 m9 1 · · · . (B.4)

It is convenient to introduce the following auxiliary
variables:

p9 p9 ˙P 5 f9 1 R T* 1 q9 , X 5 1 Zd 1 2Z t

Z
Q 5 q9, (B.5)

t

from which we obtain

1 ]Q
T9 5 2 LP 1 T*t , p9 5 (Z 2 Z )sTR ]Zd

]Q
m9 5 t , (B.6)

]Z

where

] ]
L 5 5 Z . (B.7)

] lnZ ]Z

Next the nonlinear contributions to the left-hand sides
of the prognostic equations are evaluated using the most
recent values and put on the right-hand sides along with
contributions of known fields, such as fS, yielding the
following:
linearized horizontal momentum and divergence equa-
tions,

HV D
H H 21 =P 1 f (k 3 V ) 5 (R9 2 N) ⇒ 1 ¹ Pft t

D5 (R9 2 N ) ; (B.8)

continuity equation,

]X
C1 D 5 R ; (B.9)

]Z

linearized thermodynamic equation,

1 k ]Q
u2 LP 2 (X 1 Q) 1 5 (R 2 N ) ; (B.10)

R T*t Z ]Zd

linearized vertical momentum equation,

d ]QH Vw 2 gt 5 (R 2 N ) ; (B.11)
t ]Z

vertical velocity equation,

1 R T*d wP 2 (X 1 Q) 2 gw 5 R9 . (B.12)
gt Z

In the above is the modified Laplacian (A.20), N2¹f

denotes the nonlinear contributions from the left-hand
side, R9 shows that a contribution from fS has been
subtracted out, and m=f is treated as a purely nonlinear
term.

An elliptic boundary value problem for P is obtained
by eliminating all of the other variables from (B.8) to
(B.12) as follows. Eliminating D between the diver-
gence and continuity equations (B.8) and (B.9) gives

1 ]X
2¹ P 2 5 R , (B.13)f 1t ]Z

and eliminating w from the linearized vertical momen-
tum and vertical velocity equations (B.11) and (B.12)
yields

d d R T* ]QH H dP 2 (X 1 Q) 2 5 R . (B.14)22 3 2 2g t g t Z ]Z

Eliminating ]Q/]Z between (B.14) and the linearized
thermodynamic equation (B.10) gives

L d 1H2 P 1 (X 1 Q) 5 R . (B.15)32 31 2kR T*t kg t gZd

Equation (B.15) is then used to eliminate X 1 Q from
(B.14) to obtain

d L 1 ]QH 1 1 P 2 5 R , (B.16)42 31 2g t k g ]Z

where

d R T*H d21g 5 1 1 . (B.17)
2 2kg t

Finally (B.13) 1 g(L 1 1)/t(B.15) 1 g/t (B.16) yields

d g(1 2 k) gL(L 1 1)H2¹ 2 1 P 5 R , (B.18)f 52 4 2[ ]kg t kR T*td

which, using (A.22)–(A.24) is vertically discretized as

d g(1 2 k) gH2 H¹ 2 V(Z ) 1 V P 5 R .ZZf 2 4 25 6[ ]kg t kR T*td

(B.19)

Equation (B.19) is easily decoupled as a set of horizontal
problems using the solution of the following auxiliary
generalized eigenvalue problem,

V c 5 « V(Z)c , k 5 1, NK,ZZ k k k (B.20)

and the expansion
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P(l, u, Z ) 5 P (l, u)c (Z ). (B.21)Ok k9 k9 k
k951,NK

APPENDIX C

Vertical Velocities at Initial Time

The computation of the vertical velocities at initial
time is given here. The model requires the two vertical
velocities Ż and w. As usual Ż is obtained by vertically
integrating the continuity equation (2.7) using the
boundary conditions (2.15). To obtain w, assume that
the integration starts from an hydrostatic and adiabatic
state.

Kasahara’s (1974) form of the continuity equation in
the present generalized vertical coordinate gives

] ]f ]f ] ]f˙r 1 = · rV 1 rZ 5 0. (C.1)1 2 1 2 1 2]t ]Z ]Z ]Z ]Z

and, dividing by r, this can be rewritten as

]f d lnr ]f ] ]f ]f˙1 = · V 1 1 Z 5 0. (C.2)1 2 1 2]Z dt ]Z ]Z ]t ]Z

Integrating (C.2) from Z to ZS, and using

]f ]f df˙1 Z [ 2 V · =f, (C.3)1 2]Z ]Z dt

leads to

df
[ gw

dt
Z ]f d lnr ]f

5 V · =f 2 1 = · V dZ9.E 1 2[ ]]Z9 dt ]Z9ZS

(C.4)

For hydrostatic and adiabatic motion,

d lnr d lnp ṗ
5 (1 2 k) 5 (1 2 k) , (C.5)

dt dt p

where

]p ]p˙ ˙ṗ 5 Z 1 ṡ 5 exp(s)Z 1 (p 2 p )ṡ. (C.6)T]Z ]s

Now from (2.7)

˙ ˙]Z ]s ]Z
ṡ 1 D 1 5 1 V · =s 1 D 1 5 0, (C.7)

]Z ]t ]Z

which is integrated again from Z to ZS, making use of
the boundary condition (2.15) at the surface, to give

ZS ]s
Ż 5 1 V · =s 1 D dZ9. (C.8)E 1 2]tZ

Evaluating (C.8) at the top and applying boundary con-
dition (2.15) then leads to

ZT]s 1
5 (V · =s 1 D) dZ9 and (C.9)E]t (Z 2 Z )S T ZS

ZT1
ṡ 5 V · =s 1 (V · =s 1 D) dZ9. (C.10)E(Z 2 Z )S T ZS

Inserting (C.9) into (C.8) gives
ZS

Ż 5 (V · =s 1 D) dZ9E
Z

ZS(Z 2 Z )S2 (V · =s 1 D) dZ9, (C.11)E(Z 2 Z )S T ZT

from which w can be computed by backsubstituting
(C.10) and (C.11) into (C.6), then (C.6) into (C.5), and
finally (C.5) into (C.4).
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188 pp. [Available online at http://www.cmc.ec.gc.ca/rpn/
physics/physic98.pdf.]

Phillips, N. A., 1957: A coordinate system having some special ad-
vantages for numerical forecasting. J. Meteor., 14, 184–185.

Qian, J.-H., F. H. M. Semazzi, and J. S. Scroggs, 1998: A global
nonhydrostatic semi-Lagrangian atmospheric model with topog-
raphy. Mon. Wea. Rev., 126, 747–771.

Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell III,
F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification
of the Origins of Rotation in Tornadoes Experiment: VORTEX.
Bull. Amer. Meteor. Soc., 75, 995–1006.

Rivest, C., A. Staniforth, and A. Robert, 1994: Spurious resonant
response of semi-Lagrangian discretizations to orographic forc-
ing: Diagnosis and solution. Mon. Wea. Rev., 122, 366–376.

Skamarock, W. C., P. K. Smolarkiewicz, and J. B. Klemp, 1997:

Preconditioned conjugate-residual solvers for Helmholtz equa-
tions in nonhydrostatic models. Mon. Wea. Rev., 125, 587–599.

Tanguay, M., A. Simard, and A. Staniforth, 1989: A three-dimensional
semi-Lagrangian scheme for the Canadian regional finite-ele-
ment forecast model. Mon. Wea. Rev., 117, 1861–1871.

——, A. Robert, and R. Laprise, 1990: A semi-implicit semi-La-
grangian fully compressible regional forecast model. Mon. Wea.
Rev., 118, 1970–1980.

Tremblay, A., A. Glazer, W. Yu, and R. Benoit, 1996: A mixed-phase
cloud scheme based on a single prognostic equation. Tellus, 48A,
483–500.

Wang, D., M. Xue, V. Wong, and K. K. Droegemeier, 1996: Prediction
and simulation of convective storms during VORTEX 95. Pre-
prints, 11th Conf. on Numerical Weather Prediction, Norfolk,
VA, Amer. Meteor. Soc., 301–303.

——, ——, D. Hou, and K. K. Droegemeier, 1998: Midlatitude squall
line propagation and structure as simulated by a 3D nonhy-
drostatic stormscale model. Preprints, 12th Conf. on Numerical
Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 209–212.

Xue, M., D. Hou, D. Wang, and K. K. Droegemeier, 1998a: Analysis
and prediction of convective initiation along a dryline. Preprints,
16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ,
Amer. Meteor. Soc., 161–163.

——, D. Wang, D. Hou, K. Brewster, and K. K. Droegemeier, 1998b:
Prediction of the 7 May 1995 squall lines over the central U.S.
with intermittent data assimilation. Preprints, 12th Conf. on Nu-
merical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc.,
191–194.

Yanenko, N. N., 1971: The Method of Fractional Steps. Springer, 160
pp.


