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Abstract To improve confidence in regional projections of future climate, a new dynamical downscaling
(NDD) approach with both general circulation model (GCM) bias corrections and spectral nudging is developed
and assessed over North America. GCM biases are corrected by adjusting GCM climatological means and
variances based on reanalysis data before the GCM output is used to drive a regional climate model (RCM).
Spectral nudging is also applied to constrain RCM-based biases. Three sets of RCM experiments are integrated
over a 31 year period. In the first set of experiments, the model configurations are identical except that the initial
and lateral boundary conditions are derived from either the original GCM output, the bias-corrected GCM output,
or the reanalysis data. The second set of experiments is the same as the first set except spectral nudging is applied.
The third set of experiments includes two sensitivity runs with both GCM bias corrections and nudging where
the nudging strength is progressively reduced. All RCM simulations are assessed against North American Regional
Reanalysis. The results show that NDD significantly improves the downscaledmean climate and climate variability
relative to other GCM-driven RCM downscaling approach in terms of climatological mean air temperature,
geopotential height, wind vectors, and surface air temperature variability. In the NDD approach, spectral nudging
introduces the effects of GCM bias corrections throughout the RCM domain rather than just limiting them to
the initial and lateral boundary conditions, thereby minimizing climate drifts resulting from both the GCM and
RCM biases.

1. Introduction

Most of current general circulation models (GCMs) are run with a resolution of approximately 1° ×1°. The
atmosphericmesoscale features and the land surface heterogeneity are not properly resolved in coarse-resolution
GCMs. Consequently, such GCMs cannot accurately represent temperature and precipitation extremes at finer
scale. Dynamical downscaling is one of the commonly used approaches to produce high-resolution climate
information [e.g., Giorgi et al., 2001; Lo et al., 2008]. The traditional dynamical downscaling (TDD) approach
employs a continuous integration of regional climate model (RCM) where GCM outputs are directly used to
provide initial conditions (ICs) and lateral boundary conditions (LBCs). This approach has been employed bymany
regional climate simulating and assessment projects such as the Regional Climate Model Intercomparison Project
for Asia [Fu et al., 2005], Ensembles-Based Predictions of Climate Changes and Their Impacts [van der Linden and
Mitchell, 2009], the North American Regional Climate Change Assessment Program [Mearns et al., 2012], and the
Coordinated Regional Climate Downscaling Experiment [Giorgi et al., 2009].

Output from both GCMs and RCMs can contain significant systematic biases. Significant biases from GCMs
have been documented in many previous studies. For example, GCMs can include systematic cold biases in
the middle troposphere, overestimate meridional pressure gradients during boreal winter and spring, and
underestimate frequencies and durations of wintertime atmospheric blocking activities [e.g., Van Ulden and
Van Oldenborgh, 2006; Vial and Osborn, 2011; Brands et al., 2013]. The downscaled RCM simulations are
strongly influenced by GCM skills. The TDD approach brings the biases from GCMs into RCMs through LBCs,
which degrades the downscaled simulations [e.g.,Wu et al., 2005; Seth et al., 2007; Cook and Vizy, 2008; Giorgi
et al., 2009; Xu and Yang, 2012]. To improve the downscaled climate, various methods have been proposed
to remove biases from the climatological means in GCMs before they are used to drive RCMs [e.g., Wu and
Lynch, 2000; Sato et al., 2007; Holland et al., 2010; Bruyère et al., 2013; Done et al., 2015]. Xu and Yang [2012,
hereinafter XY12] improved the above “mean bias correction” methods by introducing an additional
correction to the variance. In XY12, the GCM-driven RCM simulations were compared with those driven by
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data from the National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric
Research (NCAR) Reanalysis Project (NNRP) [Kalnay et al., 1996]. Results of XY12 suggested that the bias
corrections to GCM mean and variance greatly improved the downscaled simulations in climatological
means and extreme events. However, XY12 did not consider the impacts of RCM biases on the
downscaled climate.

Like GCMs, RCMs can also contain significant systematic biases. For instance, the Weather Research and
Forecasting (WRF) simulation in Bukovsky and Karoly [2011] shows a warm bias in the southern Great Plains,
with the temperature about 5°C warmer than the driving NNRP reanalysis in warm season. Similarly, warm
biases are also found in European regional climate ensemble simulations. For example, each of the 13 RCMs
driven by reanalysis has a distinct systematic bias in both temperature and precipitation compared to the
observations [Christensen et al., 2008]. An ERA15 (European Centre for Medium-Range Weather Forecasts
reanalysis)-driven RCM simulation by Terink et al. [2010] also shows a significant bias characterized by a too
wet and too warm climate for most of the Rhine basin. These RCM intrinsic biases will certainly not disappear
as RCMs are used to downscale GCM outputs.

Interior nudging is one of the powerful methods to further force RCM simulations toward large-scale driving
data. A number of previous studies have investigated the performance of nudging in reanalysis-driven
RCM simulations [e.g., Leung et al., 2003; Lo et al., 2008; Feser and Barcikowska, 2012]. Generally, the RCM
simulations with interior nudging show reduced mean biases and better temporal variations of precipitation
relative to those without interior nudging [Lo et al., 2008]. A 20 year WRF simulation with nudging shows that
nudging does not inappropriately squelch the extremes simulated by RCMs [Otte et al., 2012]. These studies
generally employed reanalysis data as large-scale forcing to drive RCMs with a nudging technique. Thus,
the applications of nudging significantly improve the RCM simulation by forcing the RCM toward large-scale
driving data. Nudging may not produce improved RCM simulations when we use GCM outputs as large-scale
driving data for future climate projection study. There is a concern that nudging tends to force the RCM to
retain and potentially exacerbate biases that exist in GCM outputs [Pielke et al., 2012].

XY12 investigated the impact of GCM biases on dynamical downscaling simulations by comparing RCM
simulations driven by GCM data and reanalysis, respectively. On the other hand, many studies have assessed
the impact of RCM biases on dynamical downscaling simulations by comparing reanalysis-driven RCM
simulations with observations [e.g., Leung et al., 2003; Seth and Rojas, 2003; Lo et al., 2008]. In this follow-up
study of XY12, we have investigated the combined impacts of GCM biases and RCM biases on dynamical
downscaling simulations and proposed a new dynamical downscaling approach for regional climate
downscaling and projections. The new dynamical downscaling (NDD) approach proposed in this study
combines the GCM bias correction method developed by XY12 and a spectral nudging technique. Whereas
XY12 compared GCM-driven RCM with NNRP-driven RCM, which excludes the impact of RCM bias, we here
compare GCM-driven RCM simulations with the North American Regional Reanalysis (NARR), which allows for
assessment of the impact of both GCM and RCM biases in regional climate downscaling. The NDD approach
with both GCM bias corrections and spectral nudging introduces the effect of the GCM bias corrections
throughout the RCM domain rather than just limiting them to the initial and lateral boundary conditions. It is
therefore expected to produce better downscaled climate relative to the TDD approach in which the original
GCM data are directly used to provide ICs and LBCs of RCM.

We briefly introduce the GCM bias correction method and spectral nudging technique in section 2. Section 3
describes the models used and the experimental design. Section 4 presents the performance of the NDD
approach by comparing three sets of dynamical downscaling simulations with NARR. Discussion and
conclusions are given in section 5.

2. GCM Bias Corrections and Spectral Nudging

The global model used in this study is the Community Atmosphere Model (CAM) [Neale et al., 2010]. The CAM
bias correction method is the same as that employed by XY12. So we briefly describe the bias correction
method here. First, the NNRP data at horizontal resolution of 2.5° × 2.5° with 17 vertical levels were interpolated
to CAM grids with T42 resolution (approximately 2.8° × 2.8°) and 30 vertical levels. Second, we computed the
CAM biases in mean and variance using 6-hourly CAM output and NNRP over the “past” (1950–1979). We then
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removed CAM biases inmean and variance by subtracting themean bias and scaling variance from the original
CAM simulation in the “future” (1980–2010). The bias-corrected CAM data were constructed as follows:

CAM**
F ¼ NNRPP þ CAMF � CAMP

� �þ CAM′
F �

SNNRPjP
SCAMjP

(1)

The bias corrected 6-hourly CAM data (CAMbc),CAM**
F , over the future period (1980–2010) have a base climate

provided by the NNRP data from the period of 1950–1979 (NNRPP ), mean climate change between the future

(1980–2010) and the past (1950–1979) (CAMF � CAMP ) simulated by CAM and scaled future weather and

climate variability of CAM (CAM′
F� SNNRPjPSCAMjP

). CAM′
F is a 6-hourly perturbation term. SNNRP and SCAM represent the

standard deviation of NNRP data and CAM simulations, respectively. The climate mean and variance are

computed 6-hourly using 30 year CAM output and NNRP data.CAM**
F is constructed by adding climate change

and variance-adjusted year-to-year perturbation onto the 6-hourly NNRP climatological mean. The bias
corrections were applied to the air temperature, zonal wind, meridional wind, geopotential height, and relative
humidity at each grid point and vertical level for all 6-hourly CAM output data.

It should be made clear that the bias-corrections described above differ in some subtle but important ways
from previous approaches [e.g., Wu and Lynch, 2000; Sato et al., 2007; Cook and Vizy, 2008] in which the
differences between the future and past GCM climatological means are added to the past NNRP. In contrast,
our bias correction method, as well as that in Done et al. [2015], allows the variance, diurnal cycle, seasonal
cycle, and phase of interannual variations to change from the past to future periods. Thus, these changes,
in addition to the changes in climatological means, can be investigated by using the NDD approach.

Figure 1. Annual mean RMSEs of (a) air temperature, (b) geopotential height, (c) wind vector, and (d) specific humidity in the
large-scale forcing data as a function of pressure (hPa). The RMSEs are computed relative to NNRP by using the climatological
CAM data and bias-corrected CAM data (CAMbc) over North America (20–60°N, 140–60°W) for the period of 1981–2010. CAM
and CAMbc were interpolated to pressure coordinate of NNRP. The unit of y axis: hPa.
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Specifically, our GCM bias correction method retains the natural variability simulated by GCM (e.g., El Niño–
Southern Oscillation and Pacific Decadal Oscillation) and its changes as they are important sources of
predictability for interannual and decadal climate predictions. Thus, the NDD approach can be used to
downscale the experiments from the Coupled Model Intercomparison Project Phase 5 for decadal-scale
climate prediction [Taylor et al., 2012].

The annual mean root-mean-square errors (RMSEs) of air temperature, geopotential height, wind vector,
and specific humidity climatology were computed for the original CAM output and bias-corrected CAM data
against NNRP over 1981–2010 (Figure 1). Clearly, the biases of air temperature, geopotential height, and specific
humidity are greatly reduced when the CAM bias corrections are applied (Figures 1a, 1b, and 1d). The bias
of wind vector is also reduced although it is not as remarkable as the other variables (Figure 1c). Generally,
the 850hPa wind shows larger biases in the vicinity of western mountainous zones in CAM in both summer
and winter (Figures S1a and S1b in the supporting information). These biases are moderately reduced after
bias correction is applied to the CAM fields (Figures S1c and S1d). It is also seen from Figures 1 and S1 that
all variables still show discernible biases even the GCM bias corrections are applied. As shown in equation (1)
the bias-corrected CAM data are constructed by adding climate change and variance-adjusted year-to-year
perturbation simulated by CAM onto the NNRP climatological mean over the past period. Hence, the RMSE in
the CAMbc in Figure 1 should be attributed to the bias in mean climate change from 1950–1979 to 1981–2010
simulated by CAM. It is also noted that there are clear differences between the NNRP and NARR data although
the differences of air temperature, geopotential height, and wind vector are smaller than those between
CAM (CAMbc) and NARR (Figure 2). The specific humidity in NNRP, however, shows similar RMSE as the CAM
and CAMbc, which suggests that the specific humidity in NNRP is of almost same quality as in CAM. The
differences are partly due to the improvement of NARR over NNRP (see next section). In addition, the horizontal
and vertical interpolation or extrapolation to facilitate the comparison may also result in the differences
between NARR and NNRP.

Figure 2. Same as in Figure 1 except the RMSEs of CAM, CAMbc, and NNRP are computed against NARR.
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What nudging does is to relax the RCM
simulation toward the large-scale
driving field by adding a nudging term,
which is proportional to the difference
between the simulated and prescribed
states, to the prognostic equations
[Stauffer and Seaman, 1990; Von Storch
et al., 2000]. Consequently, nudging
introduces large-scale forcing to the
interior of the model domain. Two
types of nudging are available in the
WRF model: grid nudging (or analysis
nudging) and spectral nudging. Grid
nudging is conducted in every grid
cell and for all spatial scales, while
spectral nudging, which deals with the
nudging term spectrally, is only applied
to selected wave numbers [Waldron
et al., 1996; Von Storch et al., 2000;

Miguez-Macho et al., 2004]. Hence, the spectral nudging technique is able to reduce the drift of RCM
simulations from the large-scale forcing data and simultaneously retain the small-scale features produced
by RCMs. Previous studies suggested that spectral nudging suppresses the variability less than grid nudging
[Bowden et al., 2012]. Therefore, spectral nudging was employed in this study.

3. Model Description and Experimental Design

In this study, a 63 year Atmospheric Model Intercomparison Project-type simulation was performed by using the
Community Atmosphere Model (CAM) [Neal et al. 2010] at a resolution of T42 (approximately 2.8° × 2.8°) and 30
vertical layers with observed monthly sea surface temperatures (SSTs) and sea ice concentration from 1948 to
2010. The CAM is coupled to the Community Land Model [Oleson et al., 2010], a thermodynamic only sea ice
model [Hunke and Lipscomb, 2008], and a data ocean model (DOCN) [Vertenstein and Kauffman, 2004]. DOCN is
not an active ocean model; rather, it takes SST data from an input data file and ignores any feedback from the
atmosphere model. The first 2 years were discarded for spin-up. Model outputs were saved in 6h intervals.

The regional model used in this study is the Weather Research and Forecasting (WRF) model with Advanced
Research WRF dynamic core version 3.3 [Skamarock et al., 2008]. This model has been developed and
maintained by NCAR. WRF is a nonhydrostatic model designed to serve both atmospheric research and
operational forecasting needs. The WRF model domain is centered at 40°N and 97°W with dimensions of
106 × 76 horizontal grid points (Figure 3). Horizontal resolution of 60 km was used with 28 vertical levels,
and the time step was 360 s. The main physical options we used include the Kain-Fritsch convective
parameterization [Kain, 2004], CAM shortwave and longwave radiation schemes [Collins et al., 2004], the WRF
Single-Moment 6-class microphysics scheme [Hong and Lim, 2006], the Noah land surface model [Chen and
Dudhia, 2001], and the Yonsei University planetary boundary layer scheme [Hong et al., 2006]. The IC and LBC
are given by the CAM 6-hourly outputs or NNRP 6-hourly data.

Each WRF simulation was continuously integrated over 31 years from 1980 to 2010. The first year was
discarded for spin-up. Model outputs were saved in 3 h intervals. These dynamical downscaling simulations
were compared with NARR, where 32 km NARR data were extrapolated to the 60 km domain using a box
averaging method, to assess the performance of various dynamical downscaling approaches on regional
mean climate and variability. NARR is a long-term, consistent, high-resolution data set for North America,
which shows a significant improvement over earlier global reanalysis due to the use of a regional model and
advances in modeling and data assimilation especially for precipitation assimilation, direct assimilation of
radiances, and land surface model updates. The NARR 2m air temperature and precipitation are compared
well with observations over the North American continent. The improvements of NARR over the NNRP are
greater in winter than in summer [Mesinger et al., 2006].

Figure 3. WRF model domain (shaded area) and topography (in meters).
The validation region is shown in color.
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The default spectral nudging options were employed in this study. Spectral nudging was applied to air
temperature, horizontal winds, and geopotential height with constant strength above the tenth vertical level,
approximately 750 hPa over oceans, while no nudging was conducted within the planetary boundary layer.
The nudging coefficients were set to be 3× 10�4 s�1 except for two sensitivity simulations with reduced
nudging strength (Table 1). In this study, the WRF domain size was about 6300 km×4500 km in zonal and
meridional directions, respectively. Hence, the spectral nudging with wave number 3 in both zonal and
meridional directions captures the driving field features of scale about 2100 and 1500 km, respectively. Liu
et al. [2012] show that the wavelength of about 2000 km is an appropriate choice in WRF runs. During our
simulations, nudging data were updated every 6 h with interpolated data between two 6 h inputs throughout
the 31 year simulation (1980–2010) consistent with the updating frequency of LBCs.

As summarized in Table 1, eight WRF simulations were carried out to assess the impacts of GCM bias
corrections and spectral nudging on regional climate downscaling. The first set of WRF simulations were
kept the same except that the ICs and LBCs were derived from the original CAM output (WRF_CAM), GCM
output with both mean value and variance bias corrections (WRF_CAMbc), and NNRP data (WRF_NNRP),
respectively. The second set of WRF simulations were consistent with the first set of simulations except
that spectral nudging was performed (WRF_CAM.Ng, WRF_CAMbc.Ng, and WRF_NNRP.Ng) based on the
WRF_CAM, WRF_CAMbc, and WRF_NNRP, respectively. The nudged WRF simulations are more directly
constrained by the CAM or NNRP than those without spectral nudging. There is a concern that the GCM
biases of air temperature, geopotential height, relative humidity, and wind components were corrected
independently, which likely disturb the internal balance of the atmosphere. Knowing that the geostrophic
balance gives the approximate relationship between the geopotential height and horizontal wind for
large-scale extratropical systems [Holton, 2004], the ratio of ageostrophic wind speed to total wind speed (RA)
should increase if the geostrophic balance of the atmosphere is disturbed by the GCM bias correction.
We, therefore, computed RA to test the impact of GCM bias correction on the geostrophic balance. RA
increases roughly by 5–10% (10–20%) in the troposphere, except near the surface, in January (July) when
GCM bias corrections are applied (Figure S2). Thus, nudging toward the imbalanced forcing data may be
disruptive to the RCM dynamics. To reduce the influence of the imbalance in the large-scale forcing data on
the downscaled simulation, the third set of experiments were performed, which were consistent with the
second set of simulations except the nudging coefficient was reduced to 3 × 10�5 s�1 (WRF_CAMbc.Nglow1)
and 3 × 10�6 s�1 (WRF_CAMbc.Nglow2), respectively.

4. Comparison of Different Dynamical Downscaling Simulations

To assess the performance of NDD approach developed in this study, three sets of downscaling simulations
were assessed by comparing their climatological means and variances against NARR. The direct transient
comparisons of dynamical downscaling simulations against observations were not performed since the GCM
bias correction method did not correct biases in year-to-year changes. Thus, the NDD approach is not
expected to improve the year-to-year variations of the downscaled simulation. The downscaled mean state
change between the “past” and “future” periods is not examined, either, because our GCM bias correction

Table 1. Brief Summary of Downscaling Simulations

Experiment Identifier Description

WRF_CAM Traditional dynamical downscaling approach. WRF experiment with the original CAM output as the initial and lateral boundary conditions.
WRF_CAMbc Improved dynamical downscaling approach. Same as the WRF_CAM except both the climatological mean biases and standard

deviation biases in the CAM output are corrected.
WRF_NNRP WRF experiment with the NNRP data as the initial and lateral boundary conditions.
WRF_CAM.Ng Same as the WRF_CAM except that spectral nudging was applied to wind, temperature, and geopotential height above tenth vertical

level with nudging coefficient of 3 × 10�4 s�1.
WRF_CAMbc.Ng Same as the WRF_CAMbc except that spectral nudging was applied to wind, temperature, and geopotential height above tenth

vertical level with nudging coefficient of 3 × 10�4 s�1.
WRF_NNRP.Ng Same as the WRF_NNRP except that spectral nudging was applied to wind, temperature, and geopotential height above tenth vertical

level with nudging coefficient of 3 × 10�4 s�1.
WRF_CAMbc.Nglow1 Same as the WRF_CAMbc.Ng except that the nudging coefficient was set to 3 × 10�5 s�1.
WRF_CAMbc.Nglow2 Same as the WRF_CAMbc.Ng except that the nudging coefficient was set to 3 × 10�6 s�1.
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method does not correct the bias in climate change. The differences between WRF_CAM and NARR result
from both the CAM and WRF biases. The comparison between WRF_CAM and WRF_NNRP serves to identify
the influence of CAM biases on the downscaling simulation if we take NNRP as “perfect” IC and LBC. Likewise,
the difference of WRF_NNRP and NARR primarily represents the influence of WRF bias in this study if we
assume the differences between NNRP and NARR are small. It should be noted that the CAM bias and WRF
bias defined here do not fully result from the CAM and WRF, respectively. They may contain the bias resulting
from reanalysis data because the reanalysis data are not perfect. In comparison with the CAM simulations, the
NNRP data are much closer to NARR and these reanalysis data are the best data set available to drive RCMs.
We therefore neglected the reanalysis data bias in the definition of the CAM and WRF biases. All statistics
presented in this paper are based on 30 year WRF simulations from 1981 to 2010. The Student’s t test, which
takes the serial correlation into account, was employed for the statistical test of change in mean [Zwiers and
von Storch, 1995]. F test was used for the statistical test of change in variance. The validation region (Figure 3)
excludes all buffer zones and five more adjacent grid points of the WRF model where the downscaled
simulation could be significantly distorted due to the boundary effect.

4.1. Upper Air Variables

To examine the impacts of GCM bias corrections and spectral nudging on the downscaled mean climate,
the annual mean profiles of RMSEs of climatological mean air temperature, geopotential height, wind vector,
and specific humidity were computed over the 30 year period against NARR over the validation region
(Figure 4). The annual mean RMSEs represent the overall performance of each simulation in 1 year because
the nonnegative RMSEs would not cancel out each other. In the middle and upper troposphere, the
downscaled air temperature shows the largest RMSEs of 1.3–4°C in both the WRF_CAM and WRF_CAM.Ng
simulations against the RMSEs of less than 1°C in the other simulations. This indicates that the spectral

Figure 4. Annual mean RMSEs of downscaled (a) air temperature, (b) geopotential height, (c) wind vector, and (d) specific
humidity. The RMSEs are computed between the dynamical downscaling simulations and NARR over the validation region
over 1981–2010. The data at the levels below land surface are not included in the statistics.
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nudging technique does not reduce the bias in air temperature when the original CAM output is used as
large-scale forcing (Figure 4a). The comparison of the WRF_CAMbc with the WRF_CAM indicates that the
RMSE is greatly reduced by roughly 1–3°C in the middle and upper troposphere when the GCM bias
corrections are applied. The bias is further reduced when the spectral nudging is applied in the WRF model
with bias-corrected CAM data as IC and LBC. Clearly, spectral nudging reduces WRF model biases when the
large-scale forcing data are relatively accurate, e.g., in WRF_CAMbc.Ng and WRF_NNRP.Ng. In the lower
troposphere, the comparison of the first set of experiments (WRF_CAM, WRF_CAMbc, and the WRF_NNRP)
suggests that GCM bias correction alone does not necessarily improve the downscaled air temperature. The
RMSE is reduced when both GCM bias correction and spectral nudging are applied in the WRF_CAMbc.Ng.
The NDD approach with both GCM bias correction and spectral nudging improves air temperature
throughout the atmospheric column relative to the WRF simulations using either technique alone. The RMSE
of air temperature in the WRF_CAMbc.Ng is only slightly larger than that in the WRF_NNRP.Ng (Figure 4a).

What is the role of GCM bias and RCM bias in the downscaled air temperature? The comparison of Figure 1 with
Figure 4 helps to isolate the CAM bias from the WRF bias. The bias in the large-scale forcing data is defined by
the RMSE between the spatial patterns of CAM climatology and NNRP climatology. The WRF bias is represented
by the RMSE between the WRF_NNRP climatology and the NARR climatology. In the middle and upper
troposphere, CAM shows a larger bias in air temperature than WRF characterized by the RMSEs of 2–5°C
between CAM and NNRP against the RMSEs of 0.3–1°C between the WRF_NNRP and NARR (Figures 1a and 4a).
The CAM bias in air temperature is greatly reduced when the GCM bias corrections are applied. Consequently,
the RMSE of downscaled air temperature is significantly reduced in the WRF_CAMbc (Figures 1a and 4a).
Therefore, the annual mean RMSE of downscaled air temperature in the middle and upper troposphere largely
results from the CAM bias in the WRF_CAM. The comparison of CAM with NNRP indicates that CAM shows a
significant cold bias in the middle and upper troposphere over the whole North American domain (20–60°N,
140–60°W) throughout the year. The area mean air temperature over the North American domain shows a
maximum cold bias of 4–6°C at 200 hPa (not shown). Spectral nudging relaxes the WRF simulation toward the
significantly biased CAM simulation. Consequently, the WRF_CAM.Ng shows no clear improvement in the
downscaled air temperature (Figure 4a). This result supports the argument that nudging tends to force the RCM
to retain or potentially exacerbate biases that exist in the GCM [Pielke et al., 2012]. In lower troposphere, the
RMSE of CAM is about 1.5–2°C, which is close to that ofWRF_NNRP, suggesting the CAMbias andWRF bias are of
equal importance (Figures 1a and 4a). To achieve better downscaled simulation both the CAMbias andWRFbias
need to be constrained. Therefore, the WRF simulation with both GCM bias corrections and spectral nudging
shows better performance than the simulations using either technique alone (WRF_CAM.Ng, WRF_CAMbc, and
WRF_CAMbc.Ng).

It is worth to note that the performance of WRF_CAMbc.Nglow1 closely resembles that of WRF_CAMbc.Ng even
though the strength of nudging is reduced from 3×10�4 s�1 in WRF_CAMbc.Ng to 3×10�5 s�1 in WRF_CAMbc.
Nglow1. Glisan et al. [2013] also pointed out that nudging in WRF can bemore effective with coefficients that are
weaker than the default value. However the RMSE becomes larger in the mid and lower troposphere when the
strength of nudging is further reduced from 3×10�5 s�1 inWRF_CAMbc.Nglow1 to 3×10�6 s�1 inWRF_CAMbc.
Nglow2 (Figure 4a). This suggests that the choice of nudging strength also need to be considered to achieve
better downscaled air temperature. In comparison with air temperature, the downscaled precipitation is more
sensitive to nudging strength, which will be elucidated in the following sections.

Similar to air temperature, the geopotential height, wind vector, and specific humidity are also improved in the
WRF simulation with both GCM bias corrections and spectral nudging (WRF_CAMbc.Ng, WRF_CAMbc.Nglow1,
and WRF_CAMbc.Nglow2) relative to other CAM-driven dynamical downscaling simulations. In terms of air
temperature and geopotential height, the performance of WRF_CAMbc.Ng and WRF_CAMbc.Nglow1 is already
close toWRF_NNRP.Ng. However, the RMSEs of wind vector in WRF_CAMbc.Ng andWRF_CAMbc.Nglow1 are still
remarkably larger than in WRF_NNRP.Ng (Figure 4c), which should primarily result from the bias in large-scale
forcing data. As shown in Figure 1c, the GCM bias corrections only slightly reduced the bias in CAMbc compared
with the original CAM data. Large bias in wind vector still exists in the bias-corrected CAM data, which, as
discussed in section 2, should result from the bias in mean climate change simulated by the CAM simulation
(Figure 1c). The improvement appears to be more remarkable in the upper troposphere than the lower
troposphere for the air temperature, geopotential height, and wind vector (Figures 4a–4c). The NDD approach
only slightly improves the downscaled specific humidity relative to the TDD approach, which likely results from
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the difference between NNRP and NARR. It is seen that the GCM bias corrections improve the specific humidity
than the original CAM data, as characterized by a much smaller RMSE, indicating that the specific humidity in
CAMbc is closer to NNRP than the original CAM data (Figure 1d). However, when taking NARR as reference data,
CAM, CAMbc, and NNRP show similar RMSEs in specific humidity, which suggests that the difference of specific
humidity between NNRP and NARR is comparative to that between CAM and NARR (Figure 2d). In addition,
spectral nudging is not applied to relative humidity. As a result, the improvement to the downscaled specific
humidity is not as remarkable as other variables when both GCM bias corrections and spectral nudging are
applied (Figure 4d).

The bias of 500hPa geopotential height gives a spatial overview of the performance of dynamical downscaling
simulation. In summer, WRF_CAM shows a positive bias with the maximum of 60 gpm over the central U.S.
(Figure 5a). The positive bias is exacerbated to a certain degree when the GCM bias corrections are applied
(Figure 5c). To isolate the impact of the CAM bias and theWRF bias on the downscaled geopotential height, we
computed the bias of geopotential height induced by the CAM bias (WRF_CAM–WRF_NNRP) and the WRF bias
(WRF_NNRP–NARR), respectively. The CAM bias leads to a negative difference of downscaled geopotential
height by 10–20gpm in WRF_CAM relative to WRF_NNRP (not shown). The comparison of WRF_NNRP and
NARR indicates that WRF shows a very large positive bias with a maximum of more than 60gpm over the

Figure 5. The biases of 500 hPa geopotential height (gpm) of the (a) WRF_CAM, (b) WRF_CAM.Ng, (c) WRF_CAMbc,
(d) WRF_CAMbc.Ng, (e) WRF_CAMbc.Nglow1, (f ) WRF_CAMbc.Nglow2, (g) WRF_NNRP, and (h) WRF_NNRP.Ng relative to
the NARR in summer (June-July-August). The shaded area indicates the difference above the 95% confidence level.
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central U.S. (Figure 5g). The values and patterns of WRF bias computed by WRF_NNRP minus NARR are very
similar to those in Figures 5a and 5c. This means that the biases of geopotential height in WRF_CAM and
WRF_CAMbc are largely due to the WRF bias rather than the CAM bias. Therefore, the bias of geopotential
height is greatly reduced over almost the whole model domain when spectral nudging is applied (Figures 5b,
5d–5f, and 5h). The negative CAM bias partly cancels out the positive WRF bias, which in turn leads to a
relatively smaller bias of geopotential height in WRF_CAM than in WRF_CAMbc. In comparison with
WRF_CAMbc, WRF_CAM shows a “better” result for wrong reasons (Figures 5a and 5c). The bias of geopotential
height increases with the reduction of nudging strength (Figures 5d–5f).

In winter, WRF_CAM shows a significant negative bias of geopotential height characterized by a maximum
bias of�60 gpm over the eastern part of the model domain (Figure 6a). The value and pattern of the bias are
very close to that represented by the difference between WRF_CAM and WRF_NNRP in XY12, indicating
that the negative bias of geopotential height in WRF_CAM is primarily caused by the negative bias in CAM.
Thus, the bias can be greatly reduced when the GCM bias corrections are applied (Figure 6c). In contrast,
WRF shows a slightly positive bias of about 10–20 gpm in geopotential height over the continental U.S. in
winter (Figure 6g). The downscaled geopotential height does not show significant improvement relative
to WRF_CAMbc when spectral nudging is applied which is likely due to the bias of WRF is small in winter
(Figures 6c, 6d, and 6g). In comparison with WRF_CAM, WRF_CAMbc.Ng shows a better performance in
downscaling regional climate in both winter and summer. In summer, the improvement primarily results from

Figure 6. Same as in Figure 5 except for winter (December-January-February).
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the application of spectral nudging which constrains the WRF bias. In winter, the improvement is primarily
due to the fact that GCM bias corrections reduce the CAM bias.

Figure S3 shows the bias of downscaled 850 hPa wind in summer. WRF_CAM shows a significant northerly
bias over most of the continental U.S. in summer (Figure S3a). The bias of 850 hPa wind vector is reduced in

Table 2. Root-Mean-Square Errors of Climatological Mean 850 hPa Wind Vectors (m s�1) Over Land Area in the
Validation Regiona

Spring Summer Autumn Winter

WRF_CAM 1.05 1.53 1.96 1.80
WRF_CAM.Ng 0.93 1.47 1.23 1.54
WRF_CAMbc 0.84 1.34 1.68 1.15
WRF_CAMbc.Ng 1.01 1.15 0.81 1.00
WRF_CAMbc.Nglow1 0.88 1.15 1.00 0.97
WRF_CAMbc.Nglow2 0.79 1.09 1.40 1.08
WRF_NNRP 0.75 1.22 1.40 1.15
WRF_NNRP.Ng 0.58 0.77 0.60 0.68

aThe RMSVE were computed between the WRF simulations and NARR over 1981–2010.

Figure 7. Same as in Figure 5 except for the biases of climatological mean 2m air temperature in summer.
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WRF_CAMbc and further reduced in WRF_CAMbc.Ng (Figures S3a, S3c, and S3d). Similar improvements are
also seen in downscaled wind vector in winter (Figures S4a, S4c, and S4d). Clearly, it is also true for wind
vector that the NDD approach with both GCM bias correction and spectral nudging generally performs better
than the dynamical downscaling simulations using either technique alone. To quantify the difference
between the WRF simulations and NARR, we computed the RMSE of wind vector:

RMSVE ¼ 1
N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mu;i � Ou;i
� �2 þ Mv;i � Ov;i

� �2q
(2)

where N is the total number of grid point,M andO are theWRF simulation and NARR data, and u and v subscripts
indicate the zonal and meridional wind components, respectively. In comparison with WRF_CAM, WRF_CAMbc.
Ng shows a smaller RMSVE in all seasons (Table 2). The most remarkable improvement occurs in autumn
characterized by a RMSVE of 0.81 in WRF_CAMbc.Ng against RMSVE of 1.96 in WRF_CAM. The RMSVE of
WRF_CAMbc.Nglow1 is generally close to that in WRF_CAMbc.Ng, which suggests that NDD approach with
reduced nudging coefficient of 3×10�5 does not degrade downscaled wind vector relative to that with the
default nudging coefficient of 3×10�4. RMSVE shows a further decrease in spring and summer when the
nudging strength is reduced from 3×10�5 to 3×10�6. However, RMSVE shows a clear increase in autumn from
0.81 inWRF_CAMbc.Ng to 1.40 inWRF_CAMbc.Nglow2when the nudging coefficient is reduced from 3×10�4 to
3×10�6. Similar change is also found in winter.

4.2. Surface Air Temperature
4.2.1. Mean Climate States
Figure 7 illustrates the spatial pattern of biases of climatological mean T2m in summer. In comparison with
NARR, WRF_CAM shows a pronounced warm bias over the Great Plains and a cold bias over eastern and
northwestern North America (Figure 7a). The warm bias over the Great Plains is exacerbated after GCM bias
corrections are applied although the cold biases over eastern and northwestern North America are reduced
(Figure 7c). When nudging is applied, the warm bias is greatly reduced (Figures 7b, 7d–7f, and 7h), which
indicates that the warm bias primarily results from the WRF bias. WRF_CAM shows a cold bias of 1–2°C in the
central U.S.-Canada region relative to WRF_NNRP [XY12]. However, WRF_NNRP shows a large warm bias of
4–5°C over the central U.S. relative to NARR (Figure 7g) which is generally consistent with the previous
reanalysis-driven WRF simulations [Bukovsky and Karoly, 2011; Mearns et al., 2012]. The cold bias induced by
large-scale forcing data partly cancels out the warm bias rooted in WRF model, which in turn leads to a
smaller warm bias in central U.S. region in WRF_CAM than in WRF_CAMbc (Figures 7a and 7c). The warm bias
centered in the central U.S. region in WRF_CAM, WRF_CAMbc, and WRF_NNRP extends upward to 200 hPa
and weakens with height (not shown). As a result, WRF shows a significant positive bias in the middle and
upper tropospheric geopotential height in summer (Figures 5a, 5c, and 5g). The warm bias in air temperature
and the positive bias in geopotential height are greatly reducedwhen spectral nudging is applied (Figures 5b,
5d–5f, and 5h). The reduction of the strength of nudging generally leads to an increase in the RMSE of T2m
(Figures 7d–7f and Table 3). Note that the T2m was not nudged since nudging only performed above the
tenth vertical level of WRF. Thus, the changes in T2m should be related to the changes in the atmosphere
above 700 hPa. In comparison with WRF_CAMbc, the mean air temperature between 700 and 200 hPa
decreases by 2.7°C, 2.3°C, and 1.0°C in the central U.S. region (30–45°N, 90–105°W) in WRF_CAMbc.Ng,
WRF_CAMbc.Nglow1, and WRF_CAMbc.Nglow2, respectively. Consequently, the downward longwave
radiation is reduced by 9.8Wm�2, 10.7Wm�2, and 5.1Wm�2. As a result, land surface temperature

Table 3. Root-mean-square Errors (RMSEs) of Climatological Mean 2-m air Temperature (°C) Over Land Area in the
Validation Region

Spring Summer Autumn Winter

WRF_CAM 1.44 1.81 1.38 2.33
WRF_CAM.Ng 1.66 1.39 1.18 1.86
WRF_CAMbc 1.52 1.69 1.31 1.97
WRF_CAMbc.Ng 1.08 1.51 1.02 1.32
WRF_CAMbc.Nglow1 1.23 1.54 1.10 1.50
WRF_CAMbc.Nglow2 1.42 1.51 1.21 1.79
WRF_NNRP 1.36 1.86 1.43 1.46
WRF_NNRP.Ng 1.18 1.58 1.07 1.37
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decreases by 3.2°C, 3.3°C, and 1.5°C in WRF_CAMbc.Ng, WRF_CAMbc.Nglow1, and WRF_CAMbc.Nglow2,
respectively. Thus, nudging modulates land surface temperature through changing the atmospheric
temperature and associated downward longwave radiation. The bias of atmospheric temperature increases
with the reduction of nudging strength, which leads to an increase in the bias of T2m.

In winter, WRF_CAM shows a cold bias over North America with the maximum bias of more than –4°C over
northeastern North America (Figure 8a). The cold bias is moderately reduced in WRF_CAMbc and further
reduced when spectral nudging is applied (Figures 8a, 8c, and 8d). The WRF_CAMbc.Ng simulation shows
smaller RMSEs than all other CAM-driven WRF simulations in most seasons (Table 3). The comparison of
WRF_CAMbc.Ng with WRF_CAM indicates that the most remarkable improvement of T2m appears in winter.
The RMSE of T2m in WRF_CAMbc.Ng is close to that in WRF_NNRP.Ng and smaller than that in WRF_NNRP
throughout the year. All WRF simulations show a relatively large bias in T2m over the mountainous west of
the U.S. in both summer and winter. In addition to the model biases, this is also likely due to the different
resolutions of the WRF model and NARR although we extrapolated the NARR from 32 km to 60 km. In addition,
various observational datasets (e.g., the University of Delaware data set of monthly temperatures and
precipitation, Climatic Research Unit monthly time series of temperature and precipitation, Precipitation-
Elevation regressions on Independent Slopes Model data) show some substantial differences in T2m and
precipitation in the mountainous west of the U.S. [Guirguis and Avissar, 2008; Mearns et al., 2012]. Thus, the
uncertainty of T2m in NARR may also contribute to the bias over the mountainous regions.

Figure 8. As in Figure 7 except for winter (December-January-February).
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Although the NDD approach shows an overall better performance in T2m than the TDD approach (Figures 7
and 8), the most significant improvement appears to be the air temperature over the middle and upper
troposphere rather than the lower troposphere and land surface (Figure 4a). One possible reason is that the
CAM shows a larger bias of air temperature in the upper troposphere (RMSE> 4°C) than lower troposphere
(RMSE< 2°C) (Figure 1a). Similar feature has also been found in previous simulations with an earlier version
of CAM [Khairoutdinov et al., 2005]. Hence, the bias correction plays a more important role in the upper
troposphere, and its influence can be easily transported into the RCM domain through the advection effect
and by spectral nudging than within the planetary boundary layer where no spectral nudging is applied.
4.2.2. Variance
In addition to climate mean states change, the change in climate variability is also very important in terms of
climate projection. Larger climate variability is usually linked tomore climate extreme events [Intergovernmental
Panel on Climate Change, 2012]. To examine the performance of various dynamical downscaling simulations on
the interannual variability of surface air temperature, we computed the standard deviation of seasonal mean
T2m (SDT) using the 30year simulations (1981–2010) and NARR for the same period. Figure 9 presents the ratio
of model to observed SDT in summer. The WRF_CAM overestimates the SDT by a factor of 1.5–2.5 over a large
region of the central U.S. (Figure 9a). The bias is reduced when spectral nudging is applied. However, SDT is

Figure 9. Ratio of model to observed standard deviation of seasonalmean 2m air temperature in summer (June-July-August)
for eight WRF simulations. The shaded areas indicate the differences at the 95% significance level.
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underestimated over the eastern and western U.S. (Figure 9b). The area with changes in SDT reaching the 95%
confidence level extends northward when the GCM bias corrections are applied in WRF_CAMbc (Figure 9c). In
comparison with WRF_NNRP, WRF_CAM (WRF_CAMbc) slightly underestimates (overestimates) the SDT to the
west of Great Lakes, but both biases are not significant at the 95% confidence level (not shown). The
comparison between WRF_NNRP and NARR suggests that the WRF model tends to overestimate SDT to the
west of Great Lakes. Thus, the smaller bias of SDT to thewest of Great Lakes inWRF_CAM than inWRF_CAMbc is

Table 4. Root-mean-square Errors (RMSEs) of the Standard Deviation of Seasonal-mean T2m (°C) Over Land Area in the
Validation Region

Spring Summer Autumn Winter

WRF_CAM 0.44 0.37 0.35 0.45
WRF_CAM.Ng 0.29 0.44 0.38 0.43
WRF_CAMbc 0.39 0.46 0.42 0.60
WRF_CAMbc.Ng 0.29 0.26 0.25 0.39
WRF_CAMbc.Nglow1 0.29 0.26 0.24 0.42
WRF_CAMbc.Nglow2 0.36 0.36 0.29 0.53
WRF_NNRP 0.21 0.28 0.15 0.28
WRF_NNRP.Ng 0.16 0.16 0.11 0.28

Figure 10. As in Figure 9 except for winter (December-January-February).
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likely resulted from the cancelation of WRF biases and CAM biases. The application of GCM bias corrections and
spectral nudging inWRF_CAMbc.Ng generally reduces the bias of SDT relative toWRF_CAM,WRF_CAM.Ng, and
WRF_CAMbc (Figures 9a–9d). The downscaling simulation is still comparable to WRF_CAMbc.Ng when the
nudging coefficient is reduced from 3×10�4 s�1 to 3×10�5 s�1. However, the bias of SDT increases compared
to WRF_CAMbc.Ng and WRF_CAMbc.Nglow1 when the nudging strength is further reduced to 3×10�6 in
WRF_CAMbc.Nglow2. In winter, WRF_CAMbc.Ng and WRF_CAMbc.Nglow1 also show a better performance in
the simulation of SDT relative to other CAM-driven WRF simulations (Figures 10a–10f). To quantify the biases
in eight dynamical downscaling simulations, we computed the RMSE of the SDT in different seasons (Table 4).
Clearly, WRF_CAMbc.Ng and WRF_CAMbc.Nglow1 show smallest biases of all CAM-driven WRF simulations in
all seasons. It is not surprising that WRF_NNRP.Ng shows the best performance among all dynamical
downscaling simulations since WRF is constrained by reanalysis data.
4.2.3. Frequency Distribution
Figure 11a shows the frequency distribution of daily mean T2m over the central U.S. region where WRF_CAM
shows a large bias in summer (Figure 7a). Eight WRF simulations can be grouped into two categories by their
frequency distributions. One category without spectral nudging shows larger T2mmean and variance relative to
those with spectral nudging. All WRF simulations without spectral nudging overestimated the frequency of
extreme high temperature events and underestimated the frequency of extreme low temperature events. In
contrast, the WRF simulations with spectral nudging produce a frequency distribution closer to that of NARR.
The significant improvement on frequency distribution is due to the application of spectral nudging which
constrains WRF simulations toward bias-corrected GCM data and in turn greatly reduces the WRF systematic
biases. TheWRF simulationswith both GCMbias corrections and spectral nudging show the best performance in

Figure 11. Frequency distribution for daily air temperature at 2 meter (T2m) in the central U.S. (30–45°N, 105–90°W) in
(a) summer (June-July-August) and (b) winter (December-January-February).
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reproducing the frequency distribution of T2m than all other CAM-driven WRF simulations. The frequency
distribution in WRF_CAMbc (WRF_CAMbc.Ng) is closer to that in WRF_NNRP (WRF_NNRP.Ng) than that in
WRF_CAM (WRF_CAM.Ng), suggesting that the CAM bias corrections improve the downscaled climate due to
the improved large-scale forcing data. WRF_CAMbc.Nglow1 produces a slightly better frequency distribution of
T2m than WRF_CAMbc.Ng especially for the frequency of cold extremes and warm extremes. However,
WRF_CAMbc.Nglow2 shows a better performance in normal events with temperature between 20° and 30°C
(Figure 11a). The frequency distribution shifts to a warmer side relative to WRF_CAMbc.Ng and WRF_CAMbc.
Nglow1 when the nudging coefficient is further reduced to 3×10�6 s�1 in WRF_CAMbc.Nglow2. In winter, all
WRF simulations show similar frequency distributions as the NARR data, which suggests the biases of T2m over
the central U.S. are smaller in winter than in summer. Generally, the WRF simulations with both GCM bias
corrections and spectral nudging (WRF_CAMbc.Ng and WRF_CAMbc.Nglow1) show the best performance of all
CAM-driven simulations as characterized by frequency distributions of warm extremes and cold extremes
closest to NARR (Figure 11b).

4.3. Precipitation

Figure 12 shows the differences of precipitation between the dynamical downscaling simulations and NARR
in summer. WRF_CAM overestimates the precipitation over northern and eastern North America and

Figure 12. Same as in Figure 7 but for precipitation (mmd�1) in summer (June-July-August).
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underestimates the precipitation over the central U.S. region (Figure 12a). The overestimated precipitation is
reduced over southeastern and northern North America when the GCM bias corrections are applied in
WRF_CAMbc. However, the central U.S. region becomes even drier in WRF_CAMbc than in WRF_CAM
(Figure 12c). WRF_CAMbc.Ng overestimates the precipitation by 1–3mmd�1 over themountainous west and
eastern U.S. (Figure 12d). The biases of downscaled precipitation are generally reduced with the decrease in
nudging strength (Figures 12d–12f). WRF_CAMbc and WRF_CAMbc.Nglow2 show smaller biases in

Figure 13. Same as in Figure 12 but for winter (December-January-February).

Table 5. Root-mean-square Errors (RMSEs) of Climatological Mean Precipitation (mm d�1) Over Land Area in the
Validation Region

Spring Summer Autumn Winter

WRF_CAM 1.07 1.50 1.39 1.43
WRF_CAM.Ng 1.19 1.91 0.91 1.08
WRF_CAMbc 1.19 1.59 1.01 1.15
WRF_CAMbc.Ng 1.82 2.27 1.27 1.09
WRF_CAMbc.Nglow1 1.55 2.36 1.14 0.98
WRF_CAMbc.Nglow2 1.26 1.92 1.11 1.09
WRF_NNRP 0.91 1.01 0.76 0.97
WRF_NNRP.Ng 1.03 1.37 0.80 0.82
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precipitation than other CAM-driven WRF simulations (Figures 12a–12f). In winter, WRF_CAM overestimates
precipitation by 1–3mmd�1 over the mountainous west region and underestimates the precipitation by
about 0.5–1mmd�1 over the southern U.S. (Figure 13a). The dry bias is exaggerated to a certain extent in
WRF_CAM.Ng (Figure 13b). To quantify the biases of downscaled precipitation, we calculated the RMSEs of
climatological mean precipitation over land areas in the validation region (Table 5). In comparison with
WRF_CAM, WRF_CAMbc.Ng shows smaller RMSEs of precipitation in autumn and winter but larger RMSEs of
precipitation in spring and summer, suggesting that NDD approach does not always improve the downscaled
precipitation. Significant biases of precipitation still exist in the most part of the North American continent
especially over Canada even in WRF_NNRP.Ng (Figure 12h). Note that the specific humidity in the bias
corrected CAM data and NNRP still show large differences from NARR (Figure 2d), which is one important
reason that the downscaled precipitation still show considerable biases inWRF_CAMbc, WRF_CAMbc.Ng, and
WRF_NNRP.Ng. The RMSE is relatively smaller in WRF_CAMbc.Nglow2 than in WRF_CAMbc.Ng and
WRF_CAMbc.Nglow1, suggesting that a stronger nudging process probably disrupts the model dynamics. In
addition, the NARR precipitation also contains biases although it replicates the continental U.S. precipitation
well [Bukovsky and Karoly, 2007]. The biases in NARR precipitation may also lead to the difference of
precipitation between WRF_NNRP.Ng and NARR over Canada (Figure 12h).

The temporal variability of downscaled precipitation is also examined by calculating the RMSE of variance for
each dynamical downscaling experiment against NARR. The result indicates that WRF_CAMbc.Ng shows a
smaller RMSE in autumn and winter but a larger RMSE in spring and summer than WRF_CAM does (Table 6).
Nudging reduces the RMSE of standard deviation of precipitation in all seasons when the original CAM data
or NNRP data are used as large-scale forcing data. However, nudging leads to an increase in the RMSE of
standard deviation of precipitation in spring, summer, and autumn compared to those without nudging
when the bias-corrected CAM data are used as large-scale forcing data. This implies that, except in winter, the
NDD approach tends to degrade the variability of downscaled precipitation especially in the simulation with
a stronger nudging strength.

5. Discussion and Conclusions

A new dynamical downscaling approach with GCM bias corrections and spectral nudging is developed and
validated over North America toward improving our confidence in regional projections of future climate. The
GCM mean and variance biases in air temperature, geopotential height, wind components, and relative
humidity are corrected to reduce the biases from the large-scale forcing data. The spectral nudging
technique is employed to constrain the RCM biases by relaxing the RCM simulation toward the bias-corrected
GCM data. The hindcast WRF simulations driven by CAM or NNRP data are compared with NARR to assess
their performances in reproducing historical regional climate features. Our results suggest that the
experiment (WRF_CAMbc.Ng and WRF_CAMbc.Nglow1) employing the newly developed dynamical
downscaling approach by spectrally nudging toward bias-corrected GCM fields greatly reduces bias in annual
mean profiles of the downscaled air temperature, geopotential height, and wind vectors relative to the
dynamical downscaling approach with neither spectral nudging nor bias corrections (WRF_CAM). The most
remarkable improvement appears in the middle and upper troposphere for air temperature, geopotential
height, and wind vectors. The downscaled surface air temperature at 2m is also improved in terms of
climatological mean and variance. Although the NDD approach proposed in this study (WRF_CAMbc.Ng)

Table 6. Root-mean-square Errors (RMSEs) of Standard Deviation of Seasonal-mean Precipitation (mm d�1) Over Land
Areas in the Validation Region

Spring Summer Autumn Winter

WRF_CAM 0.36 0.40 0.50 0.49
WRF_CAM.Ng 0.27 0.38 0.28 0.37
WRF_CAMbc 0.37 0.51 0.31 0.37
WRF_CAMbc.Ng 0.44 0.62 0.36 0.31
WRF_CAMbc.Nglow1 0.43 0.61 0.35 0.32
WRF_CAMbc.Nglow2 0.38 0.57 0.34 0.35
WRF_NNRP 0.31 0.39 0.32 0.32
WRF_NNRP.Ng 0.28 0.38 0.27 0.28
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significantly improves the downscaled climate in terms of surface air temperature and upper air variables, it
does not always improve the downscaled precipitation relative to the traditional dynamical downscaling
approach. For example, the downscaled precipitation is improved in autumn and winter but is degraded in
spring and summer in terms of the climatological mean and variance of precipitation. The downscaled
precipitation is improved in the NDD simulations with reduced nudging strengths (WRF_CAMbc.Nglow1 and
WRF_CAMbc.Nglow2) relative to the simulation with the default nudging strength (WRF_CAMbc.Ng).

The biases of downscaled precipitation are likely related to four reasons. (1) The CAM experiment fails to
accurately simulate the climate change (i.e., differences in the two 30 year periods) which will in turn degrade
the WRF simulation through LBC or nudging process. The GCM bias correction method employed in this
study only corrects the climatological mean and variance biases. However, the climate change from the past
to the future periods depends on the CAM simulation. Therefore, the bias-corrected CAM data still contain
significant biases (Figures 1 and S1), which in turn degrade the downscaled wind and precipitation. This
suggests that it is very important to select GCMs that can better simulate climate change features for the
regional projection of future climate. (2) The WRF model bias is also an important source of bias for the
downscaled precipitation. The improvement of model dynamics and optimization of parameterization
schemes are very important to improve the downscaled precipitation, which is not considered in this study.
(3) The difference between NNRP and NARR, especially for the specific humidity, is also an important reason
why the downscaled precipitation does not compare well with NARR (Figure 2). (4) The imbalance between
various variables in the large-scale forcing data induced by GCM bias corrections could also lead to
spurious precipitation.

To examine the influence of GCM bias corrections on the dynamics of WRF, we compute the ratio of ageostrophic
wind to total wind by using 3-hourly outputs in 1981 for six CAM-driven downscaled simulations (Figure 14).
The total wind can be divided into geostrophic and ageostrophic components. Geostrophic wind is expressed
by the gradient of the geopotential height, which defines the balance between wind and geopotential height in
the atmosphere. Thus, the ratio of ageostrophic wind speed to total wind speed can be used as a measure to
the dynamic imbalance between wind and geopotential height. The ageostrophic component shows no clear
difference between WRF_CAM and WRF_CAMbc in both January and July (Figure 14). This indicates that the
internal imbalance introduced in the large-scale forcing (WRF_CAMbc) is less important when the nudging
technique is not applied because the imbalance only appears at the lateral boundaries of the WRF. In contrast,
the ageostrophic wind component remarkably increases in WRF simulations when nudging is applied.

It is noted that nudging-induced increases in the ageostrophic wind component in the WRF model occur
not only in the WRF simulations driven by bias-corrected CAM data but also in the simulation driven by
the original CAM data. The ageostrophic component decreases with the weakening of nudging strength. The
impact of GCM-bias corrections on the geostrophic balance in the WRF is negligible in January when the
nudging coefficient is smaller than 3×10�5 s�1 (Figure 14a). In July, the ageostrophic components are
remarkably larger in WRF_CAMbc.Nglow1 and WRF_CAMbc.Nglow2 than the simulations without nudging

Figure 14. Monthly and area mean ratio of ageotrophic wind speed to actual wind speed in (a) January and (b) July. The
ageotrophic components are computed over the North American region (25–55°N, 130–65°W) using 3-hourly WRF outputs
in 1981. The grid cells with wind speeds less than 2m s�1 were excluded from the statistics.
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(WRF_CAM, WRF_CAMbc) in the middle and upper troposphere and generally smaller than in the simulations
with a strong nudging strength (WRF_CAM.Ng, WRF_CAMbc.Ng). This indicates that reducing nudging strength
in WRF_CAMbc.Nglow1 would mitigate the imbalance of atmosphere, which in turn improves the downscaled
precipitation relative toWRF_CAMbc.Ng.Meanwhile, WRF_CAMbc.Nglow1 shows almost the same performance
in the downscaled air temperature, geopotential height, wind vector, specific humidity, and surface air
temperature as WRF_CAMbc.Ng (Figures 4 and 7–10). Thus, we suggest using the NDD approach with reduced
nudging coefficient of 3× 10�5 s�1 in the projection of regional climate when all variables, e.g., air temperature,
geopotential height, wind vector, and precipitation, are of the primary concern of one study. However, the RCM
simulations with GCM bias corrections but without spectral nudging or with weak nudging coefficient are
recommended if the downscaled precipitation is the only objective.
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