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ABSTRACT

Dynamic downscaling with regional-scale climatemodels is used widely for increasing the spatial resolution

of global-scale climate model projections. One uncertainty in generating these projections is the choice of

boundary forcing applied. In this study the Nested Regional Climate Model (NRCM) is used with a grid

spacing of 12 km over the United States (excluding Hawaii) to dynamically downscale 2.58 National Centers

for Environmental Prediction–U.S. Department of Energy Reanalysis-2 data, with different applications of

spectral nudging (SN) for the boundary conditions. Nine numerical experiments for July 2005—each with

different wavenumbers and nudging duration periods, applied to different model layers—evaluated the

performance of SN in downscaling near-surface fields. The calculations were compared with the North

America Regional Reanalysis dataset over four subregions of the contiguous 48 states. Results show sig-

nificant differences with different wavenumbers, nudging duration periods, and nudging altitudes. The

short-period SN with three waves, applied above 850 hPa, showed the highest skill in simulating pre-

cipitation, whereas whole-period SN produced a higher skill level and performed slightly better than short-

period SN for surface temperature and 10-m wind, respectively. Differences in the performance of SN

applied at different altitudes were not significant. On the basis of the comparisons for precipitation, surface

temperature, and wind fields over entire contiguous states, whole-period nudging with six waves starting

above 850 hPa for downscaling calculations for climate-related variables is recommended. This method

improved the performance of the NRCM in predicting near-surface fields by more than 30.5% relative to

a case with no nudging.

1. Introduction

When considering the impacts of global climate change

due to increases in the atmospheric concentration of

carbon dioxide (Houghton et al. 1990, 1992, 1996) and

other trace gases, the focus is primarily on impacts at

the local and regional scales resulting from large-scale

changes (e.g., Wilby et al. 1998; Civerolo et al. 2008).

Although general circulation models (GCMs) demon-

strate significant skill at the continental and hemispheric

spatial scales and incorporate a large proportion of the

complexity of the global system, they are inherently un-

able to represent local subgrid-scale features and dy-

namics because of their coarse resolutions (Wigley et al.

1990; Carter et al. 1994). Thus, the need for a downscaling

methodology was recognized. Two common methods,

dynamical downscaling and statistical downscaling, have

filled this gap with varying degrees of success. The dy-

namic downscaling methodology, developed by using

existing regional-scale numerical weather prediction

models (Giorgi 2006; Mearns 2009), has become a com-

mon approach for obtaining high-resolution regional

climate information from GCMs.

However, it is a challenge to balance the performance

of regional climate models (RCMs) in adding small-scale

features while simultaneously retaining large-scale fea-

tures (Liu et al. 2012).MostRCMs have systematic errors

associated with uncertainties in their dynamics, physical

parameterization, boundary conditions, initialization, and

domain choice, as well as the resolution of the numerical

models (Giorgi and Mearns 1999; Liang et al. 2001;

Miguez-Macho et al. 2005; Lo et al. 2008; Caldwell et al.

2009). One key source of dynamical downscaling error

is inconsistency along boundaries, because over time

RCM simulation starts deviating from theGCMs, driving
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fields that are imposed at the boundaries (Davies 1976,

1983). Nudging techniques (methods for adding a cor-

rection to the predictive equation of the variable to be

adjusted at each grid point in the model) have proved

useful for preventing RCMs from drifting away from

the large-scale dynamics (Mabuchi et al. 2002; Miguez-

Macho et al. 2005; Lo et al. 2008). Two kinds of nudging

techniques are widely employed: 1) brute-force grid

nudging conducted in every grid cell (Stauffer and Seaman

1990) and 2) spectral nudging (SN) applied in the zonal

and meridional directions. Only the waves under a se-

lected wavenumber, chosen to be representative of

large-scale forcing, are kept in the nudging term (Waldron

et al. 1996; von Storch et al. 2000; Miguez-Macho et al.

2004; 2005). A number of studies have shown that SN has

an advantage over no-nudging or boundary relaxation

techniques (Feser 2006; Feser and von Storch 2005;

Rockel et al. 2008). Miguez-Macho et al. (2004) showed

that SN successfully eliminated the distortion of the

spatial pattern of precipitation when the position of the

simulation domain was shifted by 78–178. Liu et al. (2012)

compared the performance of grid nudging and SN in

downscaling with theWeather Research and Forecasting

(WRF) model and found that SN outperformed grid

nudging in balancing the performance of the simulation

at large and small scales.

This study aimed to assess the performance of dif-

ferent SN approaches in dynamical downscaling of

the National Centers for Environmental Prediction

(NCEP)–U.S. Department of Energy Reanalysis-2

(R-2) dataset with the Nested Regional Climate Model

(NRCM), a version of the WRF model (Holland et al.

2010). We will answer the following questions: 1) When

dynamical downscaling is conducted with NRCM, what

are the effects of nudging at different wavenumbers,

durations, and lowest altitudes of application on the

performance of SN in near-surface fields? 2) How well

do these different approaches perform over distinct

subregions of the contiguous United States?

Section 2 of this paper provides an overview of the

model setup, the SN methods as applied to the NRCM

model, and the experimental designs with the SN tech-

nique. Section 3 presents results for the experiments

with different SN techniques, verifies the performance

of different experiments in near-surface fields with sta-

tistical approaches over distinct subregions, and ranks

the performance of the various SN techniques. A sum-

mary and a discussion of uncertainties of the model are

in section 4.

2. Model setup and experiments with spectral
nudging

a. Model setup

The NRCM used in this study is the WRF model with

the Advanced Research WRF dynamic core, version

3.3.1. In this version, sea surface temperature (SST) is

updated every 6 h, and a diurnal signal added to skin

SST provides a more accurate lower-boundary condi-

tion. The simulation domain centered at 52.248N and

105.58W and with dimensions of 600 3 516 horizontal

grids points and spacing of 12 km, covered the contig-

uous United States (CONUS), Alaska, and most parts

of Canada and northern Mexico (Fig. 1). The Lambert

conformal conic projection was used. The vertical di-

mension comprised 50 terrain-following eta levels. The

pressure at the top of the model was 100 hPa. Initial

FIG. 1. NRCM model domain and topography map. Color scale refers to elevations (m).
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and boundary conditions for the large-scale atmospheric

fields, as well as initial soil parameters (soil water, mois-

ture, and temperature), were given by the 6-h, 2.58 3
2.58 R-2 data, and SST values were given by the daily

and 0.58 3 0.58 NCEP global analysis. The domain-

specified lateral boundary was composed of a one-point

specified zone and a nine-point relaxation zone (Davies

and Turner 1977), and the nine-point relaxation zone was

set up according to the suggestion by Giorgi et al. (1993)

that larger relaxation zones can reduce noise generation

at the boundaries.

The main physical options we used include the WRF

single-moment six-class (WSM6) microphysical param-

eterization (Hong and Lim 2006), Dudhia shortwave

radiation (Dudhia 1989), Rapid Radiative Transfer

Model longwave radiation (Mlawer et al. 1997), the

Yonsei University planetary boundary layer (PBL)

scheme (Noh et al. 2003), and the Noah land surface

model (Chen and Dudhia 2001). The Grell–Devenyi en-

semble scheme (Grell et al. 1994) was employed, because

it performed better in the spatial distribution of precipi-

tation than the newer Kain–Fritsch convective scheme

(Kain 2004) over the domain for July 2005 in this study.

We also updated the deep-layer soil temperature, a nec-

essary input for long simulations (Wang et al. 2012).

The model was integrated from 0000 UTC 30 June to

0000 UTC 31 July 2005. The initial 24 h was considered

a spinup period, and the outputs during this period were

excluded from the analysis. The evaluation period was

from 0000UTC 1 July to 0000UTC 31 July 2005, and the

verification region covered CONUS, excluding oceans

and lakes. The 32-km NCEP North American Regional

Reanalysis (NARR) dataset was used for model vali-

dation. The quality of the NARR data was evaluated

with surface station and sounding measurements of

Mesinger et al. (2006). The similarities in temperature

and wind component between NARR and NCEP–

National Center for Atmospheric Research (NCAR)

reanalysis data were found to be very high at large scales

by Liu et al. (2012). We have evaluated the NARR

precipitation with the Tropical Rainfall Measuring Mis-

sion (TRMM) 3B43 dataset as a part of this study (not

shown), and we found the agreement to be high over the

entire CONUS except over parts of southern California,

which is marked by very low rainfall for the period used

for evaluation. Thus, NARR data can be viewed as

a reasonable criterion to verify the downscaled results

from NCEP–NCAR data.

b. Spectral nudging methods

Originally introduced for a regional model byWaldron

et al. (1996), SN has also been applied for climate simu-

lations by von Storch et al. (2000). The SN technique is

based on the fact that small-scale features in model-

calculated fields result from an interplay between larger-

scale atmospheric flow and smaller-scale geographic

features such as topography, land–sea distribution, or

land use (von Storch 1999). To describe these small-scale

responses, an RCM is forced with large-scale weather

analyses at the boundaries in a typical simulation. Unlike

the conventional approach, forcing in SN is conducted

not only at the lateral boundaries but also in the interior.

This interior forcing is maintained by adding nudging

terms in the spectral domain, with maximum efficiency

for large scales and no effect for small scales. The SN

technique was first applied to WRF, version 3.1, by

Miguez-Macho et al. (2004, 2005). In the SN for WRF,

a new term is added to the tendencies of the variables

that relax the selected part of the spectrum to the

corresponding waves from the reanalysis:

dQ

dt
5L(Q)2 �

jnj#N
�

jmj#M

K(Qmn 2Qd
mn

)eikm
xeikn

y ,

(1)

whereQ is any of the prognostic variables to be nudged,

L is the model operator, andQd is the variable from the

driving fields;Qmn andQdmn
are the spectral coefficients

(also named expansion coefficients in the Fourier ex-

pansion technique) ofQ andQd, respectively, which are

calculated by decomposing the difference fields Q2Qd

in Fourier series; andK is the nudging coefficient, which

denotes the strength of the SN technique (s21); in ad-

dition, m and n are the wavenumbers in the zonal and

meridional directions in the Lambert projection, which

roughly correspond to the east–west and north–south

directions, respectively. The wave vector components

km and kn in the zonal and meridional directions depend

on the domain sizes Dx and Dy in the corresponding

direction and wavenumbers, as follows:

km 5
2pm

Dx

; kn5
2pn

Dy

. (2)

The variables nudged in this study are horizontal

winds, temperature, and geopotential height. We chose

not to nudge moisture fields, because their variations in

the horizontal, and especially in the vertical, can be very

pronounced and are likely to be missed by coarse-

resolution reanalysis (Miguez-Macho et al. 2004, 2005).

The variables in the PBL were not nudged because of

the strong coupling of the atmosphere and land sur-

face there; thus, the atmospheric state at lower levels

was free to adjust to surface properties and forcings

(Miguez-Macho et al. 2004, 2005; Lo et al. 2008). In the

SN techniques available in the public releases of WRF,
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the nudging coefficientK is a constant set byWRF users.

In contrast, in the method ofMiguez-Macho et al. (2004,

2005), K is zero in the boundary layer and increases

smoothly from about 1500m above the terrain to be-

come constant in the upper troposphere. However,

WRF users can set the height (the model layer) above

which the SN is turned on.

c. Experiments with spectral nudging

Nine experiments were conducted in this study to

investigate the effects on performance in projecting

near-surface fields when SN was applied to different

wavenumbers, nudging durations, and altitudes. The

first experiment was the control experiment (NoNU),

a 1-month run without the nudging technique. For the

second, third, and fourth experiments, SN was turned

on above 850 hPa, and different wavenumbers were

assigned (Table 1) during the spinup period, which has

benefits of smoothing the start of analysis periods and

avoiding possible false sources and sinks (Dudhia

2012). To evaluate the impacts of nudging duration on

the performance of SN in dynamical downscaling, the

time period with nudging application was extended to

the entire integrated period (see Table 1) in the fifth,

sixth, and seventh experiments, with different wave-

numbers for comparison with calculations using

nudging during the spinup period only. For the eighth

and ninth experiments, the nudging was applied at

higher altitudes (see Table 1) to 700 and 500 hPa to

investigate the variations in SN performance in near-

surface fields. The nudging coefficients for all variables

were set at 0.0003 s21. During the simulation, nudging

was conducted every 6 h, consistent with the frequency

of the R-2 data. All experiments employed the same

model domain, relaxation zones, physics options, ini-

tial conditions, and boundary conditions, and the

simulation periods were identical to that of the control

experiment. In section 3, we use the experiment

numbers shown in Table 1 to represent different nudg-

ing experiments.

3. Results

For a better evaluation of model performance, we di-

vided the portion of theCONUSwithout oceans and lakes

(308–498N, 122.58–818W) into four subregions according

to differences in topography (as show in Fig. 1) and cli-

matological characteristics (Mearns et al. 2012). These

four regions are termed the northwest region (NWR;

408–498N, 122.58–1068W), the northeast region (NER;

408–498N, 1068–87.58W), the southwest region (SWR;

32.58–408N, 1208–1028W), and the south-central region

(SCR; 308–408N, 1028–818W). In the following sections,

we evaluate the performance of simulations at these

selected regional scales. The closed triangles and the short

names in the following figures will be used to evaluate the

performanceof simulation in observed fields overweather

stations strategically located around theCONUSandnear

large defense installations, a focus of our ongoing down-

scaling study.

a. Control simulation

Figure 2 shows theNARRdata andNRCM-simulated

monthly accumulated precipitation, monthly average

surface temperature, and 10-mwind speed and direction

without nudging over the CONUS. The NRCM simu-

lation (Fig. 2b) basically reproduces the spatial pattern

of precipitation shown in Fig. 2a (NARR data), with

additional precipitation over SCR and NER and less

precipitation over NWR and SWR. However, NRCM

overestimated the precipitation over the bottom-right

corner of SCR, while it underestimated the precipitation

over the other parts of SCR and the bottom part of

NER. We have provided a corresponding set of figures

in the appendix using an absolute scale for easier inter-

pretation. For example, Fig. A1a is the same as Fig. 2a.

The NRCM simulation (Fig. 2d) also captured the spa-

tial pattern of surface temperature well (Fig. 2c), with

lower temperatures over NWR and NER and higher

temperatures over SWR and SCR. Nevertheless, the

model underestimated the surface temperature by about

28–58C or more over almost all of the CONUS, espe-

cially over NWR, NER, and SCR. An evaluation of the

performance of NRCM for 2-m temperature (data not

shown) showed a feature similar to that in surface

temperature, 18–38C lower than NARR data over all of

CONUS, although the NARR 2-m temperature dataset

is 18C higher than the observations (Mesinger et al.

2006). The performance of NRCM for 10-m wind speed

and direction (Fig. 2f) compares unfavorably to the

NARR data (Fig. 2e). For example, the high southerly

TABLE 1. Summary of experimental design.

Expt

Wavenumber* Nudging height

Nudging

periodNo. Name

1 NoNU None None None

2 w2_850_short m 5 n 5 2 Above 850hPa 24 h

3 w3_850_short m 5 n 5 3 Above 850hPa 24 h

4 w6_850_short m 5 n 5 6 Above 850hPa 24 h

5 w2_850_whole m 5 n 5 2 Above 850hPa 31 days

6 w3_850_whole m 5 n 5 3 Above 850hPa 31 days

7 w6_850_whole m 5 n 5 6 Above 850hPa 31 days

8 w3_700_whole m 5 n 5 3 Above 700hPa 31 days

9 w3_500_whole m 5 n 5 3 Above 500hPa 31 days

* In this column, m and n refer to wavenumbers in the zonal and

meridional directions, respectively.
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wind flow (Fig. 2e) over the left part of SCR drifts to-

ward the right part of SCR with northerly wind, and the

wind speed over the upper part of NER is also much

higher than the NARR data.

b. Sensitivity to wavenumbers in SN

To improve model performance in near-surface fields,

different SN choices were applied. Here, we describe

the sensitivities of the model to different choices of SN.

The choice of wavenumbers is determined by the size of

the modeling domain and the scale of the driving forces

that the RCM should retain (Liu et al. 2012). If the

wavenumber is too large, then the results of SNwould be

similar to those of grid nudging, because the nudged

scale is too small. If the wavenumber is too small, then

the nudging technique cannot represent enough energy

to force the RCMs. Liu et al. (2012) suggested wave-

lengths of about 2000 km to predict precipitation, tem-

perature, and horizontal kinetic energy, and Cha et al.

(2011) applied SN with wavelengths of about 1000 km

FIG. 2. Comparison of (a),(b) monthly accumulated precipitation (mm month21), (c),(d) monthly averaged surface temperature

(8F), and (e),(f) 10-mwind (m s21) for (left) NARR and (right) NRCM simulation with no nudging for July 2005. Four distinct regions are

labeled: NWR (408–498N, 122.58–1068W), NER (408–498N, 1068–87.58W), SWR (32.58–408N, 1208–1028W), and SCR (308–408N, 1028–
818W).
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to forecast thewind component. In this study,we employed

wavenumbers of 2, 3, and 6 in both zonal and meridional

directions, yielding wavelengths of about 3000, 2000, and

1000km for the evaluation of the performance of SN in

near-surface fields.

Figures 3a–c showmonthly accumulated precipitation

nudged by two, three, and six waves, respectively, for

24 h. Experiments 2 and 3 (Figs. 3a,b) resulted in sig-

nificantly depressed precipitation over the bottom-right

corner of SCR, which more closely resembles NARR

data than NoNU. However, experiment 2 calculated

spurious rainfall area over the bottom-right part of SCR,

and experiment 4 calculated a broader rainfall area than

the NARR data show. Another positive effect of ex-

periment 3 is the significant increase in precipitation

over the other parts of SCR relative to NoNU. All three

experiments slightly increased the precipitation over the

lower parts of NER, more like the distribution of the

NARR data, but all three experiments generated more

rainfall over SWR than the NARR data show.

Figures 3d–f show the monthly average surface temper-

ature nudged by the same approaches as for precipitation.

The results show no significant improvement for the three

SN approaches over NoNU, and the nudged surface tem-

peratures over NER and SCR are even lower than the

NARR data. Moreover, for surface temperature the per-

formance of experiment 3 is slightly worse than that of the

other two experiments, since the differences between ex-

periment 3 and NARR are slightly larger than the other

two (see the appendix). Also, the effects of wavenumbers

on 2-m temperature (data not shown) showed features like

those for surface temperature. The reason for no im-

provement in temperature by SN is possibly the short

nudging duration; the RCM simulates the temperature

primarily on the basis of local driving forces and be-

comes independent of nudging quickly.

Figures 3g–i show the monthly average 10-m wind

speed and direction by the same nudging approaches

used for precipitation and surface temperature. The

results show significant improvements in wind speed and

direction over SCR for all three experiments and slight

improvements over NER for both experiments 3 and 4.

The high wind speed and north wind over the right part

of SCR have been moved back to the left part, which is

FIG. 3. Comparison of (a)–(c)monthly accumulated precipitation, (d)–(f) monthly averaged surface temperature, and (g)–(i) 10-mwind

speed and direction for spectral nudging techniques with wavenumbers (top) 2, (middle) 3, and (bottom) 6 during short nudging periods.

The nudging techniques were conducted for 24 h.

JULY 2013 WANG AND KOTAMARTH I 1581



closer to the NARR data than to NoNU. However,

significant differences remain in the calculated wind

fields over the central SCR and the top part of NER

compared to the NARR data.

c. Sensitivity to nudging duration periods in SN

To evaluate nudging duration, we extended the nudging

periods and conducted the nudging techniques during the

entire period of integration (31 days) with two, three, and

sixwaves, respectively, to investigate howwell the nudging

techniques performed in downscaling near-surface fields.

Figures 4a–c show the monthly accumulated precipitation

nudged by two (experiment 5), three (experiment 6), or six

(experiment 7) waves during the entire integration period.

In comparison with Fig. 3, the whole-period nudging

techniques produced much more rainfall over most parts

of the four subregions than the NARR data show. How-

ever, rainfall over SCR showed slight improvement, es-

pecially for experiment 7, which performed better not only

in rainfall amount but also in spatial distributions than did

experiment 4 (conducted with the same wavenumber but

a different nudging duration).

Figures 4d–f show the surface temperature nudged by

the techniques used for precipitation. The results show

increments of 58–108F in surface temperature versus

NoNU (Fig. 2d) and the experiments with short nudging

duration (Figs. 3d–f), especially over NWR, NER, and

SWR. This observation indicates that the whole-period

nudging techniques represent a significant improvement

in simulating surface temperature. The temperatures for

experiments 6 and 7 are closer to NARR data (Fig. 2c)

than are the experiment 5 results over NER, since the

differences between experiment 6 (and 7) and NARR

are 08–48C smaller than that between experiment 5 and

NARR over NER, while the temperatures for experi-

ments 5 and 7 are closer to the NARR data than are the

experiment 6 results over NWR. The 2-m temperature

nudged in experiment 7 (data not shown) indicated

identical improvements over NWR and NER.

The superiority of the whole-period nudging tech-

niques becomes more apparent in comparisons of the

10-mwind (Figs. 4g–i) withNARRdata (Fig. 2e) and the

short-term nudging results discussed in section 3b (Figs.

3g–i). The high wind speed area over the right part of

SCR has completely moved to the left part, and the high

wind speed area over the top part of NER is signifi-

cantly decreased, both much closer to the NARR data.

In particular, of the three experiments, experiment 7

FIG. 4. As in Fig. 3, but with nudging techniques conducted for 31 days.
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performed the best in wind direction and speed over

SCR and NER, which most resemble the NARR data

shown in Fig. 2e. The wind speed over the left-middle

part of SCR in experiments 5 and 6 and that over NER

in experiment 5 are much slower than the NARR data.

All of the nudging techniques, including short-period

and whole-period nudging, presented much slower

wind speeds when forecasting the wind fields over

the western part of the CONUS, especially over the

bottom-left part of SWR and the top-right part of NWR.

d. Sensitivity to height of application of SN

The topography over the CONUS is varied and

complex, with high mountains through the southwest to

the northwest accounting for approximately half of the

CONUS area. Consequently, the nudging height could

affect model performance in near-surface fields. If the

nudging height was too low, then the model surface

variables, which have short time scales and large wave-

numbers, would be adjusted often and produce noisy

results. Therefore, we designed two experiments with

the nudging heights elevated to 700 and 500 hPa to

test the sensitivities of model performance to nudging

heights. Because the performance of different SN tech-

niques varied over the four subregions, here we only

applied nudging techniques with three waves during the

entire period of model integration. Figure 5 shows the

simulated precipitation (Figs. 5a,b), surface temperature

(Figs. 5c,d), and 10-m wind (Figs. 5e,f) with nudging

application above 700 and 500 hPa. The results show no

significant difference in precipitation, temperature, and

windwhen SNwas applied above 850 hPa (experiment 6;

Figs. 4b,e,h) or above 500hPa (experiment 9; Figs. 5b,d,f).

However, the results showmuchmore rainfall over SCR

(Fig. 5a), slightly lower surface temperature over some

parts of NER and SCR (Fig. 5c), and slower 10-m wind

speeds (Fig. 5e) over SCR in experiment 8 than in ex-

periments 6 and 9. These results do not agree well with

the NARR data.

e. Evaluation statistics and ranks

To further evaluate and compare the performance of

different SN techniques in near-surface fields, we per-

formed statistical analyses by comparing the SN grid

values with NARR grid data over distinct subregions.

To facilitate comparisons, we interpolated the 32-km

NARR data onto the 12-kmWRF grid with the inverse-

distance-squared weighting method. We also applied

two different statistical approaches. One is the root-

mean-square error (RMSE; Lo et al. 2008; Mearns et al.

2012), which provides information on model perfor-

mance at the subregional scale. Small values of RMSE

indicate slight disagreements in subregional average

precipitation (or temperature, or wind) between the

simulation and the NARR data. The other statistical

approach is the pattern correlation coefficient (COR;

Giorgi et al. 2012; Mearns et al. 2012), which indicates

the strength and direction of a spatial relationship be-

tween the simulation and NARR data. Large values of

COR mean that the spatial distribution of simulated

precipitation (or temperature, or wind) agrees well with

the NARR data. Inconsistencies between these two

FIG. 5. Comparison of (a),(b) monthly accumulated precipitation, (c),(d)monthly averaged surface temperature, and (e),(f) 10-mwind for

spectral nudging techniques above (top) 700 and (bottom) 500 hPa with wavenumber 5 3 during the nudging period of 31 days.
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verification approaches are possible; for example, RMSE

could be small because of the slight differences between

the simulated and observed subregional average pre-

cipitation (or temperature, or wind), while COR could be

small because of the poor agreement of the simulation

with the observed spatial pattern of precipitation (or

temperature, or wind). Therefore, applying the two sta-

tistical approaches together improves the evaluation of

model performance.

Figure 6a shows the evolution of RMSE for the sim-

ulated monthly accumulated precipitation over the four

distinct subregions. In comparison with NoNU (experi-

ment 1), SN significantly decreased RMSE values for

simulated precipitation over SCR, although these RMSE

values exceed those of the other three subregions, im-

plying that SCR is a sensitive, optimal region for testing

the performance of SN for precipitation. The RMSE

values were much smaller in the short-period nudging

FIG. 6. RMSEs for NoNU and nudging experiments for July 2005 over the four subregions: (a) precipitation (mmmonth21), (b) surface

temperature (8C), (c) 10-m zonal wind, and (d) 10-m meridional wind (m s21). (e)–(h) As in (a)–(d), but showing the averages of the four

subregions. The numbers on the horizontal axis are the experiment numbers shown in Table 1.
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experiments (experiments 2, 3, and 4) than in the whole-

period nudging experiments (experiments 5, 6, and 7)

overNWRandNER, and theRMSE values generated by

experiment 3 were close to the minimum for all nudging

experiments over the four subregions, implying that ex-

periment 3 is the best SN technique for improving the

performance of NRCM in simulating precipitation over

all subregions. The RMSE values for the three experi-

ments with nudging applications above different altitudes

(experiments 6, 8, and 9) were not significantly different.

Among these, experiments 6 and 9 presented slightly

smaller RMSE values than did experiment 8 over NER,

SWR, and SCR.

Figure 6b shows the evolution of RMSE of the simu-

lated monthly average surface temperature over the

four distinct subregions. In general, the SN techniques

generated the smallest RMSE values over SCR and

the largest values over NWR. The short-period nudging

techniques (experiments 2–4) did not substantially de-

crease the RMSE values, and experiment 3 even in-

creased theRMSE values overNER and SCR.All of the

whole-period nudging experiments presented smaller

RMSE values than did short-period nudging over the

four subregions, except that the nudging techniques re-

sulted in no significant improvement over SWR. RMSE

values for the SN techniques applied above different

heights were not significantly different, except that ex-

periment 8 generated slightly larger RMSE values than

did experiments 6 and 9.

Figures 6c and 6d show the evolution of the RMSE of

the simulated monthly average zonal wind (U10) and

meridional wind (V10) over the four distinct subregions.

In general, the errors of the model occurred mainly over

the western CONUS, with larger RMSE values for V10

over NWR and SWR and for U10 over SWR than over

NER and SCR. In fact, the SN techniques generated

even larger errors than did NoNU. Significant differ-

ences between various nudging techniques were ob-

served over NER and SCR: the short-period nudging

techniques presented larger RMSE values for U10 over

NER and for V10 over SCR than the whole-period

nudging techniques, which are closer to the NARRdata.

RMSE values between the SN techniques applied above

at different altitudes (experiments 6, 8, 9) were not sig-

nificantly different, except that the performance of ex-

periment 8 was slightly inferior for zonal wind overNER

and SCR.

Figures 6e–h show the four-subregion-average RMSE

values for precipitation, surface temperature, and 10-m

wind in the nine experiments. Experiment 3 shows the

smallest RMSE value for precipitation (Fig. 6e), while

experiment 7 shows the smallest RMSE value for sur-

face temperature (Fig. 6f), andmost of the whole-period

nudging techniques show smaller RMSE values than the

short-period nudging techniques for 10-m zonal and

meridionalwinds (Figs. 6g,h). To further verify the results

shown above, we interpolated NRCM precipitation,

surface temperature, and wind components to the res-

olution of NARR (32 km) using the same method as

mentioned above. Results showed that, although this

interpolation subtly increased RMSE values of all the

concerned variables in this study, the differences in

RMSE values over distinct regions and for the nine

model simulations were similar to the interpolation

from NARR (32km) to NRCM (12km). Because the

COR value reflects a spatial relationship between simu-

lation and observation, here we show the COR values

obtained for different nudging experiments and NARR

data over the entire portion of the CONUS (308–498N,

122.58–818W) that includes the four subregions. All of

the COR values in Fig. 7 pass the confidence test with

a significance level of 0.02. All of the SN techniques

significantly improved the COR values for precipitation

(Fig. 7a) versus NoNU, with a COR value larger than

0.37. The largest COR value (larger than 0.5) for exper-

iment 3 indicates that the spatial distribution of nudged

precipitation agrees quite well with the NARR data. This

agreement is also indicated by RMSE values (Fig. 6e).

Figure 7b shows the evolution of COR for surface

temperature over the entire portion of the CONUS. The

COR values generated by short-period nudging were

smaller than forNoNU,while the values generated by the

whole-period nudging were much larger than for NoNU.

These results indicate that the whole-period SN tech-

niques significantly strengthened the relationship of the

spatial patterns of simulated andNARR temperatures, in

agreement with the results of the RMSE analysis.

Figures 7c and 7d illustrate the evolution of COR for

10-m zonal and meridional wind fields over the entire

portion of the CONUS. All of the SN techniques en-

hanced the COR values in comparison with NoNU,

except that experiment 5 for V10 had a slightly smaller

COR value than did NoNU. Experiment 2 had the

largest COR value for U10 and V10, mainly because the

nudged wind directions agreed well with the NARR

data, according to our further explorations. The perfor-

mance of SN applied above 700 hPa was slightly inferior

to the performance above 850 and 500 hPa, a result also

reflected by RMSE values in Figs. 6g and 6h.

To select an optimal SN technique for application in

NRCM to forecast the near-surface fields, we compre-

hensively considered the performance of each SN tech-

nique in precipitation, surface temperature, and 10-m

wind field over the four subregions and ranked all the

SN techniques according to RMSE and COR values

(Table 2). To generate a composite index and eliminate
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the differences in RMSE values for different surface

fields, we first set up an ensemble of scores from 100 to

0 with two scores decreasing, resulting in 50 bins in this

ensemble of scores. Accordingly, we divided all of the

RMSE values for precipitation (or temperature, or

wind) for different SN techniques into 50 bins and gave

each SN technique a score. We then replaced the RMSE

values with scores from 100 to 0 for the different surface

fields and calculated the composite score (Table 2, left

side) by giving one-third to precipitation, one-third to

temperature, one-sixth to the zonal wind field, and one-

sixth to the meridional wind fields. We also calculated

composite COR values (Table 2, right side) for the differ-

ent SN techniques with the same ratios for precipitation,

temperature, and wind as for the composite scores. Table 2

shows that all of the SN techniques performed better than

NoNU. Experiment 7 showed the most significant im-

provement of all the SN techniques, decreasing the errors

and improving the spatial pattern of NRCM by more than

30.5% versus NoNU. The performance of experiment 4

was poorest in improving the accuracy and spatial distri-

bution of NRCM, with only a 15.7% improvement versus

NoNU. We also conducted a t test on the differences be-

tween theNoNUandSNexperiments, and the results show

that these improvements in the SN experiments were

mainly contributed by the simulated precipitation over the

entire CONUS and wind components over the eastern

CONUS, while the improvements in simulated tem-

perature are not significant.

4. Summary and discussion

a. Summary

The performance of eight SN techniques—with differ-

ent wavenumbers and nudging duration periods above

different layers of the model—was examined for appli-

cation in the downscaling of R-2 data with the NRCM.

Near-surface fields including precipitation, surface tem-

perature, 2-m temperature, and 10-m wind were eval-

uated against another set of high-resolution reanalysis

data (NARR).Our evaluation focused on four subregions

of the CONUS during July 2005, and we employed two

FIG. 7. Pattern correlation coefficient for NoNU and nudging

experiments for July 2005 over the entire portion of the CONUS

(122.58–818W, 308–498N): (a) precipitation, (b) surface tempera-

ture, (c) 10-m zonal wind, and (d) 10-m meridional wind. The

numbers on the horizontal axis are the experiment numbers

shown in Table 1.

TABLE 2. Ranked performance of the different SN techniques,

according to the results of statistical verification. The optimal SN

technique is in boldface type.

Composite RMSE score Composite COR value

Expt Expt

No. Name Score No. Name COR

7 w6_850_whole 58.08 7 w6_850_whole 0.381

6 w3_850_whole 57.25 3 w3_850_short 0.374

9 w3_500_whole 57.25 5 w2_850_whole 0.368

2 w2_850_short 56.75 9 w3_500_whole 0.362

8 w3_700_whole 55.67 6 w3_850_whole 0.361

5 w2_850_whole 55.17 8 w3_700_whole 0.360

3 w3_850_short 53.08 2 w2_850_short 0.357

4 w6_850_short 51.50 4 w6_850_short 0.337

1 NoNU 44.50 1 NoNU 0.291
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statistical approaches, RMSE and COR, over the sub-

regions.

We demonstrated significant differences between the

eight SN experiments. The RMSE and COR values

showed that experiment 3 is the best SN technique

for forecasting precipitation, while the whole-period

nudging techniques performed better than the short-

period nudging for forecasting the surface and 2-m

temperature and 10-m wind, except that experiment 2

showed a higher COR value for 10-m wind. In addition,

the performance of different SN techniques varied

substantially over the four subregions, which indirectly

proves that our regional subdivision was reasonable

and helpful in evaluating and comparing the perfor-

mance of diverse SN techniques. Nevertheless, we

found no significant differences among SN techniques

applied above 850, 700, and 500 hPa, except that the

performance of the nudging technique applied above

700 hPa was slightly inferior to that above the other two

altitudes.

As a basis for improving forecasts in the near-surface

fields with SN techniques, we ranked the performances

of our eight SN techniques according to two different

composite indexes: RMSE scores and COR values.

The results showed that experiment 7 (wavenumber 6,

nudging above 850 hPa for 31 days) is the optimal SN

technique for predicting near-surface fields over the

entire region (308–498N, 122.58–818W) of the CONUS

studied. This combination not only generated the

smallest errors for the NRCM model (RMSE score)

but also showed the strongest spatial relationship with

the NARR dataset (COR value).

b. Discussion

In section 3e, statistical metrics were calculated for

each of the four subregional comparisons indicated in

Figs. 2–4, as well as with respect to the NARR dataset,

both because it is available for the domain and because

its resolution best matches the model resolution. We

recognize that different datasets and different regional

divisions can cause significant differences, and there-

fore the statistical values should be considered only as

indicative rather than certain. It should be noted that,

although there are significant differences in precipi-

tation between NARR and TRMM 3B42 over Cal-

ifornia, the precipitation here is often very light. For

example, the observed (TRMM) monthly accumulated

precipitation is less than 30mm for July 2005, and the

daily mean precipitation is less than 1mm for 1998–2010

in the study of Pu et al. (2012). Therefore, we believe

that NARR precipitation can be viewed as a reason-

able criterion for verifying the NRCM precipitation in

our study.

Most of the precipitation in summer is associated

with convection. Therefore, if the Grell–Devenyi con-

vective parameterization (Grell et al. 1994) produced

too few or too many cumulus clouds, the result would

be an under- or overestimation of precipitation and a

relatively high RMSE and low COR. This issue is an-

other uncertainty or a key source for errors that should

be considered when model performance over different

subregions is evaluated. For example, the poorest per-

formance of the model in precipitation over SCR, as

shown by RMSE and COR values, was most likely in-

duced by the incomplete cumulus parameterization;

however, precipitation over the western regions with

high mountains could be influenced more by topogra-

phy than by model physics (Caldwell et al. 2009), re-

sulting in smaller RMSE and larger COR values than

over SCR.

From the differences between simulated surface

temperature and NARR data (Figs. A1–A4), we found

that the simulated temperature is more than 58C higher

than the NARR data over California and southwest

Texas. Caldwell et al. (2009) suggested that the warm

bias pattern of temperature over California is consistent

with low summertime soil moisture. By comparing the

simulated four-layer soil moisture with the NARR data,

we also found that the simulated soil moisture is lower

than the NARR data over most of the CONUS; this

should induce a warmer temperature pattern over most

of the CONUS area. However, in this study, the simu-

lated surface temperature (including NoNU and nudg-

ing) was 28–68C (even more) lower than the NARR data

over most of the CONUS area. One of the most im-

portant possible reasons for the low temperature is that

the land-use data employed in this study, supplied by the

U.S. Geological Survey for 1992–93, could not com-

pletely represent the land-use and land-cover changes

because of anthropogenic influences that have induced

significant surface warming during the past dozen years

(Pielke et al. 2002; Kalnay and Cai 2003). Therefore, the

land-use and land-cover data should be modified to de-

scribe the modern land surface features and improve the

calculation of surface temperature (Sertel et al. 2010;

Trusilova et al. 2008). In addition, the largest biases in

surface temperature over NWR with high mountains

suggest that topographic elevation and slope aspect

might also be responsible for uncertainty in the model

(Caldwell et al. 2009).
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APPENDIX

Corresponding Set of Figures

Figures A1–A4 correspond to the figures used in the text, but with absolute scales.

FIG. A1. Differences in (a) monthly accumulated precipitation (mmmonth21),

(b) monthly averaged surface temperature (8C), and (c) 10-m wind speed (m s21)

between NARR and NoNU for July 2005.
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FIG. A2. As in Fig. A1, but between NARR and SN experiments 2–4.

FIG. A3. As in Fig. A1, but between NARR and SN experiments 5–7.
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