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Spectral nudging in regional climate modeling: how strong
should we nudge?
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Abstract: Spectral nudging is a technique consisting in driving regional climate models (RCM) on selected spatial scales
corresponding to those produced by the driving global circulation model (GCM). This technique prevents large and unrealistic
departures between the GCM driving fields and the RCM fields at the GCM spatial scales. Theoretically, the relaxation of the RCM
towards the GCM should be infinitely strong provided perfect large-scale fields. In practice, the nuding time is chosen based on trial
and error . In this study, the physical parameters setting the optimal nudging coefficient are identified and their effect are discussed.
In addition to the predictability time τp, already analyzed in a companion paper (Omrani et al., 2011), the time interval τa between
consecutive GCM driving fields is a key controlling parameter, especially when spectral nudging is considered. Indeed, the driving
GCM fields are interpolated in time at every RCM integration time step, which is much smaller than τa. This produces an inaccurate
evolution of the GCM fields. An nudging time close to zero (infinitly strong nudging) would thus produce a non realistic evolution
of the RCM large-scale field and consequently an inaccurate small-scale field. The optimum nudging coefficient thus differs from
zero, however remaining smaller than the predictability time τp as discussed in Omrani et al. (2011). Furthermore depending on the
time interval τa, all scales present in the driving fields may not be well time-resolved. In can then be beneficial to filter them out
rather than driving the RCM with fields affected by time-sampling errors. Copyright c© 2009 Royal Meteorological Society
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1 Introduction

Dynamical downscaling has been widely used to improve
regional climate description at fine scale (e.g.Hewitson
and Crane, 1996). It consists in driving a regional climate
model (RCM) by large-scale fields provided by a global
circulation model (GCM) or (re)analyses as initial and
boundary conditions (IC and BC). Previous studies have
shown the necessity of relaxing the three-dimensional
RCM fields towards the GCM fields to avoid deviation
from the large-scale atmospheric circulation (e.g. Alexan-
dru et al., 2007; Lo et al., 2008; Salameh et al., 2010;
Omrani et al., 2011). This relaxation technique is also re-
ferred to as nudging.

Two different types of nudging exist, both involving
ad hoc relaxation times : the spectral nudging which
consists in driving the RCM on selected spatial scales
only (e.g. Waldron et al., 1996; von Storch et al., 2000;
Raluca Rad et al., 2008) and the indiscriminate nudging
which consists in driving the RCM indiscriminately at all
scales. Indiscriminate nudging is also referred to as data
assimilation, dynamical relaxation, grid-point nudging or
analysis nudging Anthes (1974); Hoke and Anthes (1976);
Davies and Turner (1977); Stauffer and Seaman (1990);
Lo et al. (2008); Salameh et al. (2010); Omrani et al.
(2011). For indiscriminate nudging, Omrani et al. (2011)
showed that there exists an optimal nudging value τ
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closely related to the predictability time τp (τ ∼ 0.4τp)
which minimizes the error both on the large and small
scales.

With indiscriminate nudging, strong nudging is detri-
mental because it prevents the build-up of small-scale
variability. Since spectral nudging does not affect the
small scales of the RCM fields, one intuitively expects that
the relaxation of the RCM towards the GCM should be
infinitely strong provided perfect large-scale fields. How-
ever, in the literature, even for spectral nudging, the relax-
ation time value is not zero (infinitely strong nudging). It
is a constant empirically set to produce the most realistic
fields (e.g. Raluca Rad et al., 2008).

The question this article addresses is thus: how strong
should we nudge when using spectral nudging technique,
and why ? To do so, the same technique applied in
Omrani et al. (2011) with indiscriminate nudging, is
used here with spectral nudging. It consists in using the
perfect model approach on a nudged quasi-geostrophic
model and investigates the physical processes affecting
the optimization of the nudging coefficient.

After the introduction in Section 1, Section 2 presents
briefly the quasi-geostrophic model and the processing
method. Section 3 analyses the quality of the downscaled
fields as a function of the nudging time, and discusses the
temporal sampling of the driving fields as a function of
their spatial scale. Section 4 concludes the study.
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2 The quasi-geostrophic model

2.1 Equations

As in Omrani et al. (2011), we use the flat-bottom two-
layer quasi-geostrophic (QG) model on a β-plane derived
by Haidvogel and Held (1980), modifying it only to
include the spectral nudging terms. The dimensional form
of the equations of motion for such model can be written:

∂tQ1 + J(Ψ1, Q1) = −υ56 Ψ1 (1)

∂tQ2 + J(Ψ2, Q2) = −υ56 Ψ2 − κ52 Ψ2 (2)

where x and y are the zonal and meridional coordinates
and where the subscripts 1 and 2 refer to the upper and
lower layers of the model, respectively. The quantities
Ψi and Qi are the stream function and potential vortic-
ity (PV) for layer i, J is the horizontal Jacobian operator
J(Ψi, Qi) = (∂xΨi∂yQi − ∂yΨi∂xQi) and ∇2 is the hor-
izontal Laplacian operator∇2Ψi = ∆Ψi = ∂2

xΨi + ∂2
yΨi.

The two layers have the same depth H at rest. The hy-
perviscosity ν prevents the build-up of enstrophy in high
wave numbers and κ is a surface friction term. Following
Haidvogel and Held (1980), we consider horizontally uni-
form time-averaged temperature gradient (directed north-
south) and zonal vertical shear. The mean velocity is con-
fined to the upper layer so that U2, V 2, V 1 = 0 and Ū1 =
U with U i, V i the mean zonal and meridional wind com-
ponents, respectively. Nondimensionalizing (x, y, t, ψ) by
(Rd, Rd, Rd

U , URd) with Rd = (g′ H
2f2

0
)1/2 the Rossby ra-

dius (g′ = g4θθ0 is the reduced gravity and f0 is the Corio-
lis parameter), the QG PV equations for the transient flow
become

∂t̂q̂1 + J(ψ̂1, q̂1) = −υ̂56 ψ̂1 + F1 (3)

∂t̂q̂2 + J(ψ̂2, q̂2) = −υ̂56 ψ̂2 − κ̂56 ψ̂2 + F2 (4)

where the eddy potential vorticities are:

q̂1 = ∇2ψ̂1 +
1
2

(ψ̂2 − ψ̂1) (5)

q̂2 = ∇2ψ̂2 +
1
2

(ψ̂1 − ψ̂2) (6)

The terms

F1 = −∂x̂q̂1 −
(
β̂ +

1
2

)
∂x̂ψ̂1 (7)

F2 = −
(
β̂ +

1
2

)
∂x̂ψ̂2 (8)

represent the effects of the mean temperature and plan-
etary vorticity gradients on the transient flow. All vari-
ables in Eqs. (5)-(8) are nondimensional. The parameters
which appear in these equations are β̂ = β

R2
d

U , κ̂ = κRd

U
and υ̂ = υ

R3
dU

. In the following, for sake of simplicity, the
hats of nondimensional variables will be omitted.

As in Omrani et al. (2011), we adopt the ”Big-
Brother” experiment approach to drive and evaluate the
QG model (Denis et al., 2002). The first step consists

in running a high-resolution ”Big-Brother” (BB) model
to produce a high-resolution reference dataset (qrefi , i =
1, 2). Then, the small scales existing in that reference
dataset are filtered out to generate a low-resolution dataset
(qanai , i = 1, 2). The filtering technique consists in ap-
plying a two-dimensional Fourier filter to qrefi (see sub-
section 2.2) and the ratio between the horizontal resolu-
tions of qrefi to qanai is hereafter referred to as α. The
qanai fields can be seen as analyses, reanalyses or coarse-
resolution GCM outputs. The qanai fields are used to ini-
tialize and drive another instance of the QG model referred
as ”Little-Brother” (LB) running at the same resolution as
the ”Big Brother”. The BB reference dataset (before filter-
ing) qrefi contains the small scales against which the LB
small scales are then validated.

2.2 Nudged version of the QG model

As discussed in Omrani et al. (2011), if ψanai fields are
only used as initial and boundary conditions (absence of
nudging), the LB simulated fields ψi at large scale deviate
from ψanai when the integration time is larger than the
predictability time τp . This is at least true if the numerical
domain covered by the LB QG model is sufficiently large
(a few Rossby deformation radii), in which case there
is no control by the lateral boundary conditions only. In
the following, we only consider this situation, which thus
requires the use of nudging.

In this article, we use the spectral nudging technique
as a natural follow-up of the study by Omrani et al. (2011)
on the effect of indiscriminate nudging. With spectral
nudging only the large scales are relaxed and Eqs. (3) and
(4) become :

∂tq1 + J(ψ1, q1) = −υ56 ψ1 + F1 −
1
τ

(qls1 − qana1 )

(9)

∂tq2 + J(ψ2, q2) = −υ56 ψ2 − κ56 ψ2 + F2 −
1
τ

(qls2 − qana2 )

(10)

where τ is a freely tunable parameter defined as the
nudging time . The shorter the time τ , the closer qlsi and
ψlsi will be to qanai and ψanai (i = 1, 2).

To separate the fine and large scales we apply a two-
dimensional Fourier Transform of the PV, so that:

q(x, y, t) =
∑
kx,ky

q̃(kx, ky) exp 2iπ(kx + ky) (11)

in which x, kx denotes zonal coordinates and wavenum-
bers and y, ky denotes meridional coordinates and
wavenumbers. The two-dimensional Fourier filter is de-
fined by:

q̃ls(kx, ky) = q̃(kx, ky) if k2
x + k2

y ≤ k2
cut

= 0 if k2
x + k2

y > k2
cut

(12)

where kcut is the cut-off wavenumber. The filtering tech-
nique consists in applying this filter to qrefi so that all
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SPECTRAL NUDGING IN REGIONAL CLIMATE MODELING: HOW STRONG SHOULD WE NUDGE? 3

scales of q̃lsi with a wavenumber higher then α are re-
moved, where α = kcut

max(k) is the spectral truncation co-
efficient.

3 Downscaling using the QG model

As in Omrani et al. (2011), we set β̂ = 0.25, κ̂ = 0.5, ν̂ =
0.0001. The domain size is 24Rd × 24Rd and the number
of grid points is 128× 128. This implies that one Rossby
radius is made of 5.3 grid points. The corresponding
predictabilty time is τp ' 10. It has been quantified by
computing the initial exponential error growth, yielding
the first Lyapunov exponent λ = 1/τp (see Omrani et al.,
2011for more details). We run the LB model with different
nudging times τ ranging between 0.01τp and τp, and a
different spectral truncation coefficients α =1/2, 1/4, 1/6,
1/8 and 1/16 (not shown).

3.1 Evaluation methodology

To quantify the ability of the downscaled LB field qi
to reproduce the BB reference field qrefi in layer i, we
first evaluate the variance ratio of LB to BB solutions
σ2
qi
/σ2

qref
i

, which is a classical diagnostics for climate

model evaluation . Using a time interval τa = τp/20, we
found a dependance of σ2

qi
/σ2

qref
i

on τ similar to the
one obtained with indiscriminate nudging Omrani et al.
(2011), with the important exception of the range 0 ≤ τ ≤
0.5τp (not shown). In this range we find σ2

qi
/σ2

qref
i

∼ 1
for both large scale fields and small-scale fields. With
indiscriminate nudging σ2

qi
/σ2

qref
i

∼ 1 only for large scale
fields while this ratio computed with small-scale fields
increases until it reaches a maximum close to 1 for
as τ goes from 0 to 0.5τp. For 0.5τp ≤ τ ≤ 6τp, with
indiscriminate or spectral nudging, and for both large and
small scales, σ2

qi
/σ2

qref
i

decreases down to a value of about
0.2 then increases up to a value of about 1. Overall this
behavior is consistent with the fact that for small nudging
time, the production of small-scale features is inhibited by
indiscriminate nudging and not by spectral nudging while
for very large values of τ , nudging has no longer any
effect, and both small and large-scale fields in LB have
the same variance as in BB.

A second approach for LB model evaluation, which
corresponds to deterministic evaluation, consists in com-
puting their normalised covariance ai and the correlation
coefficient ri defined as

ai =
cov

(
qrefi , qi

)
σ
(
qrefi

)2 (13)

ri =
cov(qrefi , qi)

σ
(
qrefi

)
σ (qi)

(14)

where σ (qi) =
√
cov(qi, qi) (15)

and cov(qrefi , qi) =
(
qrefi − qrefi

)
(qi − qi) (16)
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Figure 1. Time evolution of qref,ls
1 (x0, y0, t) (black) and

qana
1 (x0, y0, t) (red) (a), of qref,ls

1 (x0, y0, t) (black) and
qls
1 (x0, y0, t) (red) for τ = 0.1τp (b) and qref,ls

1 (x0, y0, t) (black)
and qls

1 (x0, y0, t) (red) in the absence of nudging (c) for α = 1/2
and τa = τp/5.

where q is the spatial average of q (see Omrani et al., 2011
for more details). The quantities ai and ri represent the
slope and spread of the scatter plot between qrefi and qi.
When ai and ri are close to 1, the RCM reproduces accu-
rately at each time step and each grid point the reference
field. These skill scores are much more constraining than a
comparison of climatological statistical diagnostics (Mur-
phy and Epstein, 1989). In order to evaluate quantitatively
the quality of the simulations of the fine and large scale
features, the LB PV fields qi in the simulations are de-
composed into a large-scale part (qlsi and qref,lsi ) and a
small-scale part (qssi and qref,ssi ) by application of low-
pass and high-pass Fourier filters with cut-off wavelength
being the resolution of the field qanai driving the simula-
tion.

3.2 Nudging towards infrequent vs frequent large-scale
driving fields

We now analyse two sets experiments with τa = τp/5 (in-
frequent driving fields) and τa = τp/20 (frequent driving
fields). First we illustrate qualitatively the effect of the
nudging time on the output of the LB. Then for each set of
experiment the ability of the LB to reproduce the BB ref-
erence fields is evaluated as described in subsection 3.1,
as a function of the nudging time τ and as a function of
the spectral truncation coefficient α.

Figure 1a displays BB large-scale potential vorticity
qref,ls1 (x0, y0, t) spatially low-pass filtered with spectral
truncation coefficient α and sampled at a certain location
(x0, y0) in the domain. This time series is compared to
qana1 (x0, y0, t) which is obtained by piecewise linear in-
terpolation of the filtered reference data over intervals of
length τa = τp/5. The linear interpolation filters out the
variability at short temporal scales, which is of signifi-
cant amplitude in the reference fields. Figure 1b compares
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Figure 2. Time evolution of covariance coefficient a1 (panels a, c)
and correlation coefficient r1 (panels b, d) computed in layer 1 for
the large (ls subscript, panels a, b) and small scales (ss subscript,

panels c, d) for τa = τp/20, α = 1/2 and various values of τ .

qref,ls1 (x0, y0, t) and the LB large-scale potential vortic-
ity qls1 (x0, y0, t) obtained in a strongly nudged simula-
tion (τ = τp/10) . The large-scale simulated PV qls1 is
undistinguishable from qana1 , and therefore the high fre-
quency variability of the large-scale field is lost because
of the temporal interpolation between 2 consecutive driv-
ing fields (qana1 ). Figure 1c finally compares qref,ls1 and qls1
obtained without nudging. At the beginning of the simu-
lation, there is a near perfect agreement between qref,ls1

and qls1 . However the two fields start to depart from each
other after t = τp and diverge completely for t > 3τp. This
highlights the necessity of nudging. Is there in between an
optimal nudging time that allows the model to create its
own large scale dynamics without losing the information
present in the driving fields ? We will try to answer this
question in what follows.

Figure 2 shows the time evolution of the covariance
coefficient a1 and correlation coefficient r1 computed in
layer 1 for the small scales (ss subscript) and the large
scales (ls subscript) for α = 1/2, τa = τp/20 and various
nudging times . Between t = 0 and 0.3τp, small scales
are produced by the LB model (they are absent from the
initial condition at t = 0). The black curve in panels a
and b shows the evolution of als1 and rls1 for qana1 . It
displays oscillations which take the value 1 every time
t is a multiple of τa (perfect match between qana1 and
qref,ls1 ). For small nudging time (e.g. τ = 0.01τp), LB
large-scale field qls1 are forced to stick to qana1 . This results
in similar oscillations of coefficients als1 and rls1 which
are close to 1 every time t is a multiple of τa but not as
good in between. For the small scales, coefficients ass1 and
rss1 take fairly high values (0.7 and 0.9, respectively) but
display oscillations which evidence unrealistic behaviour
of the small-scale dynamics. Coefficients ass1 and rss1
evolve in phase with coefficients als1 and rls1 , which can be
interpreted as the error propagating from the large to the
small scales. When the nudging time increases (τ = τp),

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

τ/τ
p

a 1,
ls

 

 

(a)

α=1/2

α=1/4

α=1/6

α=1/8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

τ/τ
p

r 1,
ls

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

τ/τ
p

a 1,
ss

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

τ/τ
p

r 1,
ss

(d)

Figure 3. Covariance coefficient a1 (panels a, c) and correlation
coefficient r1 (panels b, d) computed in layer 1 for the large (ls
subscript, panels a, b) and small scales (ss subscript, panels c, d)
as a function of the nudging time τ normalised by the predictability
time τp using various spectral truncation factors α for τa = τp/20.

coefficients a1 and r1, both at large and small scales,
tend to low values (about 0.5-0.6 for large scales due
to partial boundary control, and 0 for small scales). The
large and the small scales are thus poorly reproduced. An
intermediate value of τ (τ = 0.2τp) allows the production
of small-scales with good accuracy (ass1 and rss1 equal to
0.8 and 0.95, respectively) and minimizes the oscillating
effect. This advocates for the existence of an optimal
nudging time which is different from 0. When τa = τp/20,
the general behaviour is similar but the coefficients ass1
and rss1 drop down to 0.4 with much larger oscillations for
τ equal to 0.01τp and 0.2τp .

Figure 3 displays the covariance (a1) and correlation
(r1) coefficients computed in layer 1 for the small (ss
subscript) and the large scale (ls subscript) as a function
of the nudging time normalised by the predictability time
(τ/τp) using various resolution factors α and τa = τp/20.
For large scales, coefficients als1 and rls1 decrease as the
nudging time τ increases and as the spectral truncation
coefficient α decreases, especially for τ ≥ τa. This is in
agreement with Omrani et al. (2011). For small scales,
coefficients ass1 and rss1 exhibit a bell curve for low
values of τ with an optimum for τ ' 0.2τp. Regarding the
dependence on α, coefficients ass1 and rss1 take generally
higher values with decreasing α (for α = 1/16 and below,
this is no longer true because the Rossby deformation
radius is comparable to the grid size). Figure 4 is the same
as Fig. 3 for τa = τp/5. Similar curves are obtained but
especially the coefficients a1,ss and r1,ss are much lower
than for τa = τp/20 (this is also true for large scales but to
a lesser extent) .

One can note that in Fig. 3 (τa = τp/20), for τ <
0.2τp, coefficients ass1 and rss1 are larger for α = 1/4 than
for α = 1/2. We now argue that this may be because the
”small scales” present in the large-scale driving fields are
not well resolved in time.
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Figure 4. Same as Fig. 3 for τa = τp/5.

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

k

C
(k

,τ l)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

k

C
(k

,τ l)

(b)

τ
l
=τ

p
/20

τ
l
=τ

p
/5

Figure 5. Normalized temporal self-correlation C(kx, ky; τl) of
the reference PV field, as a function of the wavenumber k = (k2

x +

k2
y)1/2, for τl = τp/5 (a) and τl = τp/20 (b).

3.3 Relationship between spatial and temporal scales

To explore this hypothesis, we compute the normalized
temporal self-correlation of the reference PV field as a
function of the wavenumber and time lag τl:

C(kx, ky; τl) =
〈q̃∗(kx, kyt) q̃(kx, ky, t− τl)〉
〈q̃∗(kx, kyt) q̃(kx, ky, t)〉

(17)

where 〈.〉 denotes temporal averaging.
Figure 5 displays the normalized self-correlation

function for time lag equal to τl = τp/20 and τl = τp/5 as
a function of the wavenumber k = (k2

x + k2
y)1/2. The ver-

tical solid lines indicate the corresponding spectral trun-
cation factors α ranging from 1/8 to 1/2. The two plots
start with a moderately high self-correlation near k = 0
that gradually decrease as a function of wavenumber. This
decrease is faster for τl = τp/5 than for τl = τp/20 . This
shows, unsurprisingly, that spatial small scales remain
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Figure 6. Maximum spectral truncation factor αcr as a function of
the reanalysis interval τa.

self-correlated over short temporal scales. A low self-
correlation C(kx, ky, τl) implies that driving large-scale
fields sampled at intervals τa = τl do not represent ac-
curately the spatial scale (kx, ky) even if it is nominally
present in (resolved by) the large-scale fields. Thus these
scales do not represent useful information for the regional
model. Injected into the model they can even generate ad-
ditional errors. It should then be advantageous to let the
model generate such scales dynamically itself. This may
explain the higher scores obtained with the lowest spectral
truncation coefficients.

We now define a critical wave vector kcr(τl) and a
corresponding critical truncation coefficient αcr(τl) be-
yond which the small scales are no more correlated. For
this we choose 1/e as a threshold value of the autocorrela-
tion function, i.e. C(k, τl) < 1/e for k > kcr(τl). For τa =
τp/20 (Fig. 5a) the value of αcr is around of 0.2 which ex-
plains that the small scales corresponding to α = 1/4 are
better represented than those for α = 1/2. For τa = τp/5
(Fig. 5b) scales above α = 0.06 are not well correlated.
Therefore we expect that the highest scores will corre-
spond to α = 1/16 (not shown) . However, for this value
the model dynamics is not properly solved because the
Rossby deformation radius is comparable to the grid size.
The highest score correponds to α = 1/8 even if it remains
low.

For a given time interval τa, if we want to nudge only
towards large-scale data that is correctly time-resolved,
we should set the spectral coefficient factor α such that
α ≤ αcr(τl = τa). Figure 6 summarizes the relationship
between the spatial scale of processes and their temporal
scale as provided by αcr(τa). Except for small τa ,
where all the spatial scales are well correlated in time,
αcr decreases with τa, obeying roughly αcr τa = cst in
our idealized set-up. For a large interval, the temporal
variability of almost all scales is poorly sampled and αcr
tends to zero.

4 Summary

We have analyzed the impact of the time interval of the
driving large-scale fields on the outputs of a spectrally
nudged model. In Omrani et al. (2011), it has been
shown that for indiscriminate nudging, there is a trade-off
between the adverse effect of nudging on small scales and
the departure of the large-scales from the driving fields.
In spectral nudging, this trade-off does not exist since
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small scales are not affected. Contrary to expectations,
an infinitely strong spectral nudging does not produce
optimal reconstruction of the small scales. Indeed, this
would be true only if the driving fields were fully resolved
in time. However, for practical reasons, the driving large-
scale fields are only available every multiple of a certain
time interval τa, much larger than the model integration
step and are linearly interpolated in time in between. This
puts a lower bound on the optimal nudging time : there is
no gain in reducing the nudging time below the interval
τa (the upper bound being a fraction of the predictability
time τp ; Omrani et al., 2011).

Furthermore there is a relationship between spatial
and temporal variability of the forcing fields. As a conse-
quence, the small scales that have very short characteristic
time are poorly sampled in the forcing fields if τa is too
long. In this case, the forcing fields are effectively affected
by sampling errors. Since τa is usually not a freely ad-
justable parameter, it is then in fact beneficial to remove
the finest and fastest scales from the forcing fields to avoid
sampling errors.

Therefore a key factor that limits how strong spectral
nudging should be is the finite temporal resolution of the
forcing fields. A consequence is that care must be given
to their spatial resolution as well to ensure that all the in-
formation fed into the model is as correct as possible. The
procedure outlined in subsection 3.3 may provide a prac-
tical means to check that the forcing fields are adequately
time-resolved and adjust their spatial resolution as neces-
sary.
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