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Abstract

These notes are meant to describe the properties of a new orography filter/smoother,
recently implemented as an option in the GenPhysX generator.

1 Brief review on filters and response functions

1.1 A simple, generic 1-d filter

Consider a 1-dimensional uniform grid, with resolution ∆x and grid points labeled by integers,

xn = n∆x , n = 0, 1, 2, · · · (1)

Now consider a field H (for example, GEM’s orography field “ME””) defined on the same
grid and represented by

H(xn) = Hn (2)

The action of a typical filter/smoother acting on the field H can be described by a linear
operator of the form

Hn → HF
n = c1Hn +

p−1∑
m=1

(crm+1Hn+m + clm+1Hn−m) (3)

where HF is the filtered field. Note that the filter can be seen as a linear combination of
(2p− 1) neighboring values, i.e. the original “central” value combined with those of (p− 1)
“neighbors to the right” and (p− 1) “neighbors to the left”. Assuming left-right symmetry,
i.e. choosing crm = clm = cm, then that the filter is defined by a total of p coefficients,
c1, · · · , cp,

Hn → HF
n = c1Hn +

p−1∑
m=1

cm+1(Hn+m +Hn−m) (4)
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1.2 Response function R

To describe the impact of a filter on individual spatial scales, let us consider the Fourier
decomposition of field H in terms of wavenumbers. For a given scale or wavelength L, let

K =
2π

L
= wavenumber (5)

and

k =
∆x

L
= non-dimensional wavenumber (6)

such that

Kxn =
2π

L
n∆x = 2πkn (7)

The minimum wavelength resolved by the grid is Lmin = 2∆x, so that the range of the non-
dimensional wavenumber is −1/2 ≤ k ≤ 1/2. Therefore the complex Fourier decomposition
of H at the grid-point n, written in terms of the non-dimensional wavenumber k, reads

Hn =
∫ 1/2

−1/2
A(k)ei2πkn dk (8)

where A(k) provides the Fourier coefficients of H(x).
Using the filter operator in eq. 4, we can relate the Fourier coefficients A(k) of the original

field H to the coefficients AF (k) of the filtered field HF , as follows:

HF
n = c1Hn +

p−1∑
m=1

cm+1(Hn+m +Hn−m)

= c1

∫ 1/2

−1/2
A(k)ei2πkn dk +

p−1∑
m=1

cm+1

∫ 1/2

−1/2
A(k)ei2πkn

(
ei2πkm + e−i2πkm

)
dk

=
∫ 1/2

−1/2


c1 + 2

p−1∑
m=1

cm+1 cos(2πkm)

A(k)

 ei2πkn dk
=

∫ 1/2

−1/2
AF (k)ei2πkn dk

=⇒ AF (k) =

c1 + 2
p−1∑
m=1

cm+1 cos(2πkm)

A(k) (9)

In terms of wavenumbers, the filter’s response function R 1 is here defined as the ratio of
Fourier coefficients AF/A,

R(k) =
AF (k)

A(k)
= c1 + 2

p−1∑
m=1

cm+1 cos(2πkm) (10)

1Often one computes the ratio of power spectra – i.e. the power spectrum of the filtered field, divided by
the power spectrum of the unfiltered one – as an estimate of the response function. Since the power spectrum
is basically P (k) ∼ |A(k)|2, the ratio of power spectra is not really R; it is actually given by its square,
PF (k)
P (k) = (R(k))2.
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For a given non-dimensional wavenumber k, or equivalently for a given scale L = ∆x/k,
the response function R(k) measures how much the amplitude of the original field (in our
case, the orography) is amplified or damped by the filter. Notice that the coefficients cn
appear on the r.h.s. as the coefficients of a truncated Fourier expansion, i.e. the truncated
Fourier/cosine expansion of R(k).

1.3 Impact of the filter on the spatial average of the field

Assuming a periodic grid (or, in the non-periodic case, neglecting boundary terms), the
impact of the filter on the mean field is dictated by the sum of the filter coefficients,

〈
HF

〉
= c1 〈H〉+

p−1∑
m=1

cm+1(〈H〉+ 〈H〉)

=

c1 + 2
p−1∑
m=1

cm+1

 〈H〉
=⇒

〈
HF

〉
〈H〉

= c1 + 2
p−1∑
m=1

cm+1 (11)

where 〈· · ·〉 indicates the operation of spatial-averaging. Notice that the sum of coefficients
on the r.h.s of eq. 11 is the same as the response function at the largest scale (i.e. when
L→∞, or equivalently when k → 0),

lim
k→0

R(k) = c1 + 2
p−1∑
m=1

cm+1 (12)

If we want the filter to preserve the average value of the field (i.e. if we want to impose the

condition
〈
HF

〉
= 〈H〉), we may normalize the coefficients cm such that

c1 + 2
p−1∑
m=1

cm+1 = 1 (13)

The results presented in section 1 apply to most 1-d filters. In the following sections, we
apply these results to 2 specific filter, the “old” 2dx filter and the “new” low-pass filter.

2 Design and properties of the old 2dx filter

This filter involves only the nearest pair of neighboring grid points, and can be written as
follows,

HF
n = (1− f)Hn +

f

2
(Hn+1 +Hn−1) (14)

Notice that it depends on only one parameter f , which is proportional to the relative weight
(f/2) given to the neighboring values. Notice also that the coefficients/weights are already
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normalized, i.e. (1 − f) + f/2 + f/2 = 1, so that the application of this filter will preserve
the mean.

Using eq.10, we derive the corresponding response function,

Rf (k) = (1− f) + 2 · f
2

cos(2πk)

= 1− f [1− cos(2πk)]

= 1− 2f sin2(πk) (15)

For the scale/wavelength of size 2-dx, i.e. for the largest wavenumbers k = ±1/2, the response
function is

Rf (±1/2) = 1− 2f sin2(±π/2) = 1− 2f (16)

In particular, if we choose the parameter f = 1/2, we get

R1/2(±1/2) = 0 (17)

This choice (i.e. with f = 1/2) corresponds to the what we call the “old 2dx filter”. The
name “2dx filter” comes from the fact it can completely eliminate/filter-out the 2dx scales,
which was probably its original objective. The problem with this filter is that it strongly
impacts scales much larger than 2dx as well – see fig.1. Therefore the interest in trying
alternative, sharper filters.

3 Design and properties of the new low-pass filter

Consider an idealized low-pass filter that eliminates all scales smaller than a given cut-off
scale Lc = rc∆x, while keeping the larger scales intact. This can be represented by the
“ideal” response function

R∞(k) =

{
1, 0 < |k| < 1

rc

0, 1
rc
< |k| < 1

2

(18)

(The meaning of the index ∞ in R∞ will be explained later).
Let us consider the Fourier decomposition of this response function R(k). We do this

because the coefficients of the Fourier decomposition of R will eventually lead us to the
coefficients of the digital filter in real space – see eq.10.

For an even response function R of k, i.e. assuming R(−k) = R(k), its general cosine-
decomposition reads

R(k) =
a0
2

+
∞∑
n=1

an cos(2πkn) (19)

where the expansion coeffiecients are

an ≡ 2
∫ 1/2

−1/2
R(k) cos(2πkn) dk

= 4
∫ 1/2

0
R(k) cos(2πkn) dk , n = 0, 1, 2, · · · (20)
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In the case of the idealized filter above, we have

an = 4
∫ 1/2

0
R∞(k) cos(2πkn) dk

= 4
∫ 1/rc

0
cos(2πkn) dk

=
2

πn
sin(2πn/rc) , n = 1, 2, · · · (21)

and

a0 = 4
∫ 1/2

0
R∞(k) dk = 4

∫ 1/rc

0
dk =

4

rc
(22)

that is, the idealized response function can be expanded as

R∞(k) =
2

rc
+
∞∑
n=1

2

πn
sin(2πn/rc) cos(2πkn)

=
2

rc

{
1 + 2

∞∑
n=1

[
sin(2πn/rc)

2πn/rc

]
cos(2πkn)

}
(23)

Consider now the corresponding truncated series of p terms,

Rp(k) =
2

rc

1 + 2
p−1∑
n=1

[
sin(2πn/rc)

2πn/rc

]
cos(2πkn)

 (24)

of which the idealized filter is a limiting case, i.e.

R∞(k) = lim
p→∞

Rp(k) (25)

This truncated series is, of course, an approximation of the ideal filter. This type of ap-
proximation often leads to ripples and overshoots. To reduce somewhat the amplitude of
the ripples and smooth the truncated filter, let us perform a rectangular-window averaging 2

around each wavenumber k, with an avering window of [k − 1/p, k + 1/p] , i.e.

R̂p(k) =
p

2

∫ k+1/p

k−1/p
Rp(ν) dν

=
p

2

∫ k+1/p

k−1/p

2

rc

1 + 2
p−1∑
n=1

[
sin(2πn/rc)

2πn/rc

]
cos(2πνn)

 dν

=
2

rc

1 + 2
p−1∑
n=1

[
sin(2πn/rc)

2πn/rc

]
· p

2

∫ k+1/p

k−1/p
cos(2πνn) dν


=

2

rc

1 + 2
p−1∑
n=1

[
sin(2πn/rc)

2πn/rc

]
· p

2

[
sin(2πn(k + 1/p))− sin(2πn(k − 1/p))

2πn

]
=

2

rc

1 + 2
p−1∑
n=1

[
sin(2πn/rc)

2πn/rc
· sin(2πn/p)

2πn/p

]
cos(2πkn)

 (26)

2This is equivalent to perfoming a convolution with a top-hat function of width 2/p, as explained in a
separate note.
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where we used the trigonometric identity sin(a + b) − sin(a − b) = 2 cos(a) sin(b). This
shows that the effect of the rectangular-window averaging simply amounts to multiplying the
original coefficients of the truncated Fourier expansion by the so-called sigma factors 3,

σnp =
sin(2πn/p)

2πn/p
(27)

where p is the truncation number.
Comparing the expansion of R̂p(k) with equation (10), we may inticipate that R̂p(k) is

the response function of the following filter:

HF
n = c1Hn +

p−1∑
m=1

cm+1(Hn+m +Hn−m) (28)

with

c1 =
2

rc
(29)

and

cm+1 =
2

rc

[
sin(2πm/rc)

2πm/rc
· sin(2πm/p)

2πm/p

]
, m = 1, · · · , p− 1 (30)

Finally, one may want normalize these coefficients in order to preserve the mean. In this
case, it suffices to re-scale them as follows,

cm → ĉm =
cm
Sp

(31)

where

Sp = c1 + 2
p−1∑
m=1

cm+1 (32)

is the sum of the non-normalized coefficients of the truncated filter. In sum, the new filter is
defined by the set of p normalized coefficients ĉn.

Notice that these coefficients depend on 2 integer parameters, (i) the cut-off scale param-
eter rc, which indicates the threshold wavelength (as a multiple of ∆x) beyond which the
amplitude of the signal should be reduced – see figure 1; and (ii) the truncation parameter
p, which basically controls the sharpness of the filter: the larger the value of p, the sharper
the filter – see figure 2.

In practice, it is recommended to choose p > rc (i.e. an averaging-window larger than the
wavelength we expect to filter out), and possibly p >> rc, in which case the rc∆x becomes
the wavelength whose amplitude is reduced by a factor of 0.5 – see figure 1.

3Note that these sigma factors may be expressed in terms of the so-called normalized sinc function,

defined as sinc(x) = sin(πx)
πx . This is also discussed in the additional notes.
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4 2-dimensional extension

Take the normalized coefficient ĉn defined above. Now, assuming a 2-d cartesian grid
with uniform resolution and gridpoints labeled as (xm, yn) = (m∆x, n∆y), and a 2-d field
H(xm, yn) = Hm,n, the filter can be implemented as a sequential application of the 1-d fil-
ter, e.g. first in the x-direction followed by an application in the y-direction (note that this
sequence is commutable), i.e.

Wm,n = ĉ1Hm,n +
p−1∑
i=1

ĉi+1(Hm+i,n +Hm−i,n) (33)

HF
m,n = ĉ1Wm,n +

p−1∑
j=1

ĉj+1(Wm,n+j +Wm,n−j) (34)

where Wm,n is simply an auxiliary field, resulting from the intermediate filtering in the x-
direction. Examples of power spectra and response functions for 2-d global, filtered orography
fields are shown in figures 3 and 4.

5 Implementation of the new low-pass filter in Gen-

PhysX, including extra options

In GenphysX, the values of rc and p are controled by the following parameters

LPASSFLT RC DELTAX (default = 3.0)
LPASSFLT P (default = 20)

Two additional options are also available, as described below. A separate document (“Addi-
tional notes on the properties of the low-pass filter”) provides more details on these parameters
and options.

Important:

• As already mentioned, it is preferable that the parameters p and rc satisfy the constraint
p > rc. In grid-point space this constraint translates into an intuitive condition: “one
should use at least 2 rc (∼ 2p) gridpoints to represent (and eventually filter out) a wave
of length rc∆x”. In fact, the latest recommendation is to set p = 5 rc. More
details are available in the additional notes.

• The application of the options described below (mask and local-min-max conditions)
has an impact on the filter response. That type of impact is also discussed in the
additional notes.
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5.1 Optional masking field

It was observed that the new filter could still generate some small noisy ripples over the oceans
near the coast lines. To remove those noisy values, one may activate a “mask” operator based
on the properties of a chosen field, e.g. by taking HF only over cells where the orography
variance – the field SSS – is large enough (e.g. only where SSS > 0.01m), and keeping
HF = H otherwise. This masking operation is available and is controled by the following
settings in GenPhysX:

LPASSFLT MASK OPERATOR = 1 (default is 0, which means “don’t apply it”;
1 means “larger than”; and -1 means “lesser than” the threshold defined below)

LPASSFLT MASK THRESHOLD = 0.01 (in meters; default value is 100.)

5.2 Optional local-min-max constraint

One may also impose that the filter preserve local minima/maxima, for instance by defining
two auxiliary fields,

H lmin
m,n = minimum value among the 9 neighboring points around Hm,n (35)

H lmax
m,n = maximum value among the 9 neighboring points around Hm,n (36)

and imposing

HF
m,n = min(max(HF

m,n, H
lmin
m,n ), H lmax

m,n ) (37)

In GenPhysX, this option is activated by the logical switch

LPASSFLT APPLY MINMAX = True (default is True)
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Figure 1: Sensitivity to cut-off parameter rc.
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Figure 2: Sensitivity to sharpness parameter p.
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Figure 3: Power spectra of the orography field ME for a global Yin-Yang grid with ∆x ≈ 25
km: unfiltered field (black); smoothed by the operational 2dx filter (blue); smoothed by the
new low-pass filter with rc = 3 and p = 20 (red); and a reference L2 spectrum (dashed).
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Figure 4: Response function of the 2dx filter and the new low-pass filter, based on the spectra
shown in figure 3.
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