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Abstract

“Separating scales” from databases is recommended when calculating subgrid oro-
graphic fields for physical parametrizations. In principle, this could be achieved by
pre-pocessing the databases themselves. Unfortunately, these pre-processed databases
are not yet available at CMC. These notes are meant to provide an alternative to this
pre-processing, by describing a method to approximately (i) fill up the high-wavenumber
spectrum of orography and (ii) separate scales of the subgrid variance and slope covari-
ances in a way that is convenient for the boundary layer (PBL) and subgrid orography
(SSO) parameterizations.

1 Total variance of subgrid orography

Suppose that the orography power spectrum S(K) generally obeys a power law,

S(k) = A ·K−β (1)

where A is some amplitude (which varies from a grid-cell to another), K is the total wavenum-
ber, and β is a known exponent. In fact, observations suggest that β ∼ 2 (see Fig. 1). Then
the total variance of the sugbrid orography for a given grid-cell would be

σt
2 =

∫ ∞
Km

S(K) dK =
A

(β − 1)
Km

−(β−1) (2)

where

Km =
2π

Lm
(3)

is the wavenumber associated with the grid-cell size, which is given by the model resolution
(i.e. Lm ∼

√
∆x ∆y).
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2 Total variance reconstruction from partial variance

An estimate of orography variance is currently produced by the generator of geophysical
fields (e.g. Genesis or GenPhysX) for each grid-cell, using elevation data from a database
chosen by the user.

Suppose that the chosen database has a resolution Lb (e.g. GTOPO30 has Lb ∼ 900m),
that Lb < Lm (i.e. the resolution of database is higher than the model resolution), and let

Kb =
2π

Lb
(4)

be the associated wavenumber. Then the grid-cell orography variance obtained from this
database would be

σb
2 =

∫ Kb

Km

S(k) dk =
A

(β − 1)

(
Km

−(β−1) −Kb
−(β−1)

)
(5)

Note that σb is an underestimation of the total variance, since it lacks contributions from the
small scales not resolved by the database.

Still, once σb is obtained, we may find (and eliminate) the unknown amplitude A, and so
reconstruct the total variance σt from σb and from the resolution ratio:

σt
2 = σb

2 Km
−(β−1)(

Km
−(β−1) −Kb

−(β−1)
) =

σb
2

1−
(
Lb

Lm

)β−1 (6)

Defining the auxiliary parameter

wmb =
(
Lb
Lm

)β−1
(7)

we have

σt
2 =

σb
2

(1− wmb)
(8)

Note 1: The above equations only make sense if the database has enough resolution com-
pared to your model resolution, i.e. if Lb < Lm. Ideally, you should have Lb � Lm. If not,
just get yourself a better database!

3 Separation of total variance

Now suppose that we want to separate the total variance σt into a large- and a small-
component, based on a prescribed separation scale Ls (and the associated wavenumber Ks =
2π/Ls). This type of separation is in fact useful for the partition of orography forcing between
the PBL scheme and the SSO scheme, in which case the recommended separation scale is
Ls ∼ 5km.
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Assuming that Lb < Ls < Lm, then we may decompose

σt
2 = σlarge

2 + σsmall
2 (9)

where

σsmall
2 =

∫ ∞
Ks

S(K) dK =
A

(β − 1)
Ks
−(β−1) = σt

2
(
Ks

Km

)−(β−1)
= σt

2
(
Ls
Lm

)β−1
(10)

and

σlarge
2 =

∫ Ks

Km

S(K) dK = σt
2

[
1−

(
Ls
Lm

)β−1]
(11)

Note that the above separation formula may be generalized to the case when Lm < Ls
(e.g. high-resolution models), if we define the auxiliary separation parameter

wms =
[
min

(
Ls
Lm

, 1
)]β−1

(12)

so that

σsmall
2 = wms · σt2 (13)

σlarge
2 = (1− wms) · σt2 (14)

If your model resolution is higher than the separation scale, i.e. Lm < Ls, then w → 1 and
all the variance goes into the small-scale component.

Combining the above relations with those of the previous section, we finally get

σsmall
2 =

wms
(1− wmb)

· σb2 (15)

σlarge
2 =

(1− wms)
(1− wmb)

· σb2 (16)

which show how to estimate the requested output (i.e. σsmall
2 and σlarge

2) from the provided
input (i.e. σb

2 and the resolution ratios).

Note 2: We should probably consider the notion of effective resolution, both for the model
and for the database, when defining the values of the parameters Lm and Lb.
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4 Slope covariances

A similar re-scaling may be derived for the slope covariances,

Gxx =
∫ Ks

Km

k2S(K) dK (17)

Gyy =
∫ Ks

Km

l2S(K) dK (18)

Gxy =
∫ Ks

Km

klS(K) dK (19)

where k and l indicate wavenumbers in the x- and y- directions respectively, and K2 = k2+l2.
Note that the SSO scheme only needs the large-scale component of these quantities, therefore
the integral limits Km to Ks.

Assuming approximate isotropy, i.e. that Gxx ∼ Gyy ∼ 0.5
∫

(k2 + l2)S(K) dK, we could
estimate

Gxx ∼ 0.5
∫ Ks

Km

K2S(K) dK = 0.5
A

(3− β)

(
Ks

(3−β) −Km
(3−β)

)
(20)

If we use all the wavelengths available in the high-resolution database to compute the covari-
ance, we will be oversestimating this quantity by

Gb
xx ∼ 0.5

∫ Kb

Km

K2S(K) dK = 0.5
A

(3− β)

(
Kb

(3−β) −Km
(3−β)

)
∼ 1

r
Gxx (21)

where the factor r is given by

r =

(
Ks

(3−β) −Km
(3−β)

)
(
Kb

(3−β) −Km
(3−β)

) =

(
Lm

Ls

)(3−β)
− 1(

Lm

Lb

)(3−β)
− 1

(22)

Note that, if β ∼ 2, then 0 < r < 1 whenever Lb < Ls < Lm, consistent with the statement
that Gb

xx is an overestimate of Gxx.
Assuming that Gb

xx is the quantity provided by GenPhysX, then the adjusted (re-scaled)
value we actually want would be

Gxx ∼ r ·Gb
xx (23)

We could use the same re-scaling to adjust Gyy and Gxy.

Note 3: Alternatively (ideally), we would avoid the need of such re-scaling if we could
compute the covariances directly from a database of resolution Lb ∼ Ls.
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5 Generalization to the case of a 2-exponent spectrum

Some studies suggest that the orography spectrum may actually have the form:

S(K) = A ·
{
K−β1 , if K ≤ K0

K
(β2−β1)
0 K−β2 , if K > K0

(24)

where β1 and β2 are distinct exponents, and K0 is a the wavenumber where the that change
occurs. For instance, Beljaars et al. 2004 propose β1 = 1.9, β2 = 2.8, and K0 = 0.003m−1

(i.e. L0 ∼ 2km).
Hereafter we will assume that the database has a sufficiently high resolution, i.e. that

Lb < L0 and Lb < Lm. In this case, the calculation of the total variance splits into 2 cases:
(i) if Lm > L0 (Km < K0):

σt
2 =

∫ ∞
Km

S(K) dK (25)

= A ·
[

1

(β1 − 1)
Km

−(β1−1) +
(β1 − β2)

(β1 − 1)(β2 − 1)
K0
−(β1−1)

]
(26)

(ii) if Lm < L0 (Km > K0):

σt
2 =

∫ ∞
Km

S(K) dK = A ·

K(β2−β1)
0

(β2 − 1)
Km

−(β2−1)

 (27)

Meanwhile, the calculation of σb
2 also falls into 2 cases:

(i) if Lm > L0 (Km < K0):

σb
2 =

∫ Kb

Km

S(K) dK (28)

= A ·

 1

(β1 − 1)
Km

−(β1−1) +
(β1 − β2)

(β1 − 1)(β2 − 1)
K0
−(β1−1) − K

(β2−β1)
0

(β2 − 1)
Kb
−(β2−1)

 (29)

= σt
2 ·
[
1− 1

c

(
Lb
Lm

)(β2−1)
]

(30)

where

c =
(β2 − 1)

(β1 − 1)

(
L0

Lm

)(β2−β1)
+

(β1 − β2)
(β1 − 1)

(
L0

Lm

)(β2−1)
(31)

(ii) if Lm < L0 (Km > K0):

σb
2 =

∫ Kb

Km

S(K) dK = A ·

K(β2−β1)
0

(β2 − 1)

(
Km

−(β2−1) −Kb
−(β2−1)

) (32)

= σt
2 ·
[
1−

(
Lb
Lm

)(β2−1)
]

(33)
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Note that the 2 cases may now be unified as follows:

σt
2 =

σb
2

(1− wmb)
(34)

where

wmb =
1

c

(
Lb
Lm

)(β2−1)
(35)

c =
(β2 − 1)

(β1 − 1)
a(β2−β1) +

(β1 − β2)
(β1 − 1)

a(β2−1) (36)

a = min
(
L0

Lm
, 1
)

(37)

As for the separation of scales, we must consider 2 different cases:
(i) if Lm > Ls (Km < Ks), i.e. for a relatively course-resolution model:

σ2
small =

∫ ∞
Ks

S(K) dK (38)

= A ·
[

1

(β1 − 1)
Ks
−(β1−1) +

(β1 − β2)
(β1 − 1)(β2 − 1)

K0
−(β1−1)

]
(39)

= σ2
t ·
(
Ls
Lm

)(β1−1)

[
1 + (β1−β2)

(β2−1)

(
L0

Ls

)(β1−1)]
[
1 + (β1−β2)

(β2−1)

(
L0

Ls

)(β1−1) ( Ls

Lm

)(β1−1)] (40)

(ii) if Lm < Ls (Km > Ks), i.e. for a relatively high-resolution model:

σ2
small = σ2

t (41)

The relations above may also be unified as follows:

σ2
small = wms · σ2

t (42)

where

wms = b(β1−1)

[
1 + (β1−β2)

(β2−1)

(
L0

Ls

)(β1−1)]
[
1 + (β1−β2)

(β2−1)

(
L0

Ls

)(β1−1)
b(β1−1)

] (43)

and

b = min
(
Ls
Lm

, 1
)

(44)
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In sum, the relations

σ2
small =

wms
(1− wmb)

· σ2
b (45)

σ2
large =

(1− wms)
(1− wmb)

· σ2
b (46)

(47)

are still valid, all we need to use is the generalized formulas for wms and wmb.
The same type of generalization may be extended to the scaling of slope covariances.

Except that now we only care for the case in which Lm > Ls (Km < Ks):

Gxx ∼ 0.5
∫ Ks

Km

K2S(K) dK = 0.5
A

(3− β1)
(
Ks

(3−β1) −Km
(3−β1)

)
(48)

and

Gb
xx ∼ 0.5

∫ Kb

Km

K2S(K) dK (49)

= 0.5
A

(3− β1)

[
(3− β1)
(3− β2)

(
K0

Kb

)(β2−β1)
Kb

(3−β1) −Km
(3−β1) (50)

+
(β1 − β2)

(3− β − 1)(3− β2)
K0

(3−β1)
]

(51)

which implies that

Gxx ∼ r ·Gb
xx (52)

where the scaling factor now reads

r =
1− b(3−β1)

(3−β1)
(3−β2)

(
Lb

L0

)(β2−β1) (Ls

Lb

)(3−β1) − b(3−β1) + (β1−β2)
(3−β1)(3−β2)

(
Ls

L0

)(3−β1) (53)

Examples of scaling factors for a range of model resolutions are shown in Figure 2.

6 Implementation in GenPhysX

Only the formulas based on the 1-exponent spectrum are currently implemented in Gen-
PhysX. To activate this scale-separation method in GenPhysX, it suffices to set the option

-subgrid SPLIT

The default values of the spectrum exponent β and the separation wavelength Ls (in m) are
set, respectively, as

set Const(beta) 2.
set Const(lres) 5000.0

The values of these parameteres may in principle be re-set by the user.
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Figure 1: Power spectrum of orography derived from the resolved (non-filtered) topography
elevation field of the GDPS-25km model. In the x-axis, N is what was indicated as K in the
formulas above. A spectrum with β = 2 is also shown for reference.
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Figure 2: Scaling factors for variances and slope covariances for various model resolutions,
assuming a database with resolution Lb = 0.9km. Solid lines correspond to the 2-exponent
slope assumption β1 = 1.9, β2 = 2.8, and dashed lines correspond to the single slope assump-
tion (β1 = β2 = 2).
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